Итак, геометрический смысл производной заключается в следующем:
Производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0.
3. Физический смысл производной.
Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени [t0; t0+ ∆t] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.
Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.
limVср (t) = n(t0) - мгновенная скорость в момент времени t0, ∆t → 0.
а lim = ∆x/∆t = x'(t0) (по определению производной).
Итак, n(t) =x'(t).
Физический смысл производной заключается в следующем: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0
Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.
u(t) = x'(t) - скорость,
a(f) = n'(t) - ускорение, или
a(t) = x"(t).
Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращательном движении:
φ = φ(t) - изменение угла от времени,
ω = φ'(t) - угловая скорость,
ε = φ'(t) - угловое ускорение, или ε = φ"(t).
Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:
m = m(х) - масса,
xÎ [0; l], l - длина стержня,
р = m'(х) - линейная плотность.
С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука
F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω2x(t) = 0,
где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).
Уравнение вида у" + ω2y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решением таких уравнений является функция
у = Asin(ωt + φ0) или у = Acos(ωt + φ0), где
А - амплитуда колебаний, ω - циклическая частота,
φ0 - начальная фаза.
4. Правила дифференцирования
(C)’= 0С=const | |
(cosx)'=-sinx | |
(sinx)'=cosx | |
(tgx)'= | (ах)'=аxlna |
(ctgx)'=- | (ех)'=ex |
Производная степенно-показательной функции
, где . .Логарифмическое дифференцирование. Пусть дана функция
. При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам дифференцирования найти производную затруднительно.Так как по первоначальному предположению
не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную (1)Отношение
называется логарифмической производной функции . Из формулы (1) получаем . ИлиФормула (2) дает простой способ нахождения производной функции
.5. Производные высших порядков
Ясно, что производная
функции y =f (x) есть также функция от x:Если функция f ' (x) дифференцируема, то её производная обозначается символом y'' =f '' (x) и называется второй производной функции f(x) или производной функции f(x) второго порядка. Пользуясь обозначением
можем написатьОчень удобно пользоваться также обозначением
, указывающим, что функция y=f(x) была продифференцирована по x два раза.Вообще n-я производная или производная n-го порядка функции y=f(x) обозначается символами
Дифференцируя производную первого порядка, можно получить производную второго порядка, а, дифференцируя полученную функцию, получаем производную третьего порядка и т.д. Тогда возникает вопрос: сколько производных высших порядков можно получить в случае произвольной функции.
Например:
1)
; ; ; ...; ; .Разные функции ведут себя по-разному при многократном дифференцировании. Одни имеют конечное количество производных высших порядков, другие – переходят сами в себя, а третьи, хотя и дифференцируемы бесконечное количество раз, но порождают новые функции, отличные от исходной.
Однако все сформулированные теоремы о производных первых порядков выполняются для производных высших порядков.
6. Изучение функции с помощью производной
6.1.Возрастание и убывание функции. Экстремум функции.
Определение 1. Функция f(x) называется возрастающей в интервале(a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если f(x2) > f(x1) при x2 > x1.
Рис.1 (а) |
Рис.1 (б) |
Из этого определения следует, что у возрастающей в интервале (a,b) функции f(x) в любой точке этого интервала приращенияDxиDyимеют одинаковые знаки.
График возрастающей функции показан на рисунке1(а).
Если из неравенства x2 > x1 вытекает нестрогое неравенство f (x2)³f (x1), то функция f (x) называется неубывающей в интервале (a, b ). Пример такой функции показан на рисунке 2(а). На интервале [ x0 , x1] она сохраняет постоянное значение C
Определение 2. Функция f (x) называется убывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если f(x2) < f(x1) при x2 > x1.
Из этого определения следует, что у убывающей в интервале ( a, b )функцииf (x)в любой точке этого интервала приращенияDxиDyимеют разные знаки. График убывающей функции показан на рисунке 1(б).