3.Кольца последовательностей и функций. Среди этих колец выделим особо:
а) кольцо последовательностей действительных чисел с обычными операциями сложения и умножения последовательностей;
б) кольцо ограниченных последовательностей действительных чисел;
в) кольцо фундаментальных последовательностей;
г) кольцо непрерывных действительно-значных функций на отрезке [0 , 1].
4. Кольца матриц. Среди разнообразных матричных колец выделим следующие:
а) полное матричное кольцо Mn(A) над кольцом A или кольцо квадратных матриц порядка n с элементами из кольца A, в качестве кольца коэффициентов A можно рассматривать, в частности, любое числовое кольцо;
б) кольцо Dn(A) диагональных матриц, т.е. матриц, у которых вне главной диагонали находятся только нулевые элементы;
в) кольцо TNn(A) нильтреугольных матриц, т.е. треугольных матриц с нулями на главной диагонали.
Кольца Mn и TNn являются некоммутативными, в кольце TNn нет единицы.
30. Примеры полей.
1. Числовые поля.Q, R, C, Q[i], Q[
] .2. Поля дробно-рациональных функций: Q(x), R(x), C(x). Так, элементами множества R(x) являются всевозможные функции вида
, где f(x), g(x) - многочлены с действительными коэффициентами, причем многочлен g(x) ненулевой. Операции сложения и умножения дробей обычные.3. Поле вычетов Zp по простому модулю p. Например, для p=7 утверждение получается из следующих равенств в кольце Z7: 2Ä4 = 3Ä5 = 6Ä6 = 1.
40. Арифметика колец и полей. Важнейшие арифметические свойства элементов колец и полей приведены в теоремах.
Теорема. Для любых элементов кольца справедливы равенства:
(а) 0×x = x×0 = 0;
(б) правило знаков: x(- y) = (-x)y = -(xy);
(в) (дистрибутивность умножения относительно разности)
(x - y)z = xz - yz, x(y - z) = xy - xz;
где разность определяется обычным образомx - y := x + (- y).
Доказательство. (а) Имеем: 0×x = (0 + 0)×x = 0×x +0×x, откуда0×x = 0. Аналогично проверяется и второе равенство x×0 = 0.
(б) Имеем: 0 = x×0 = x×(y + (-y)) = x×y +x×(-y), откуда x×(-y) = -(x×y).
(в) Имеем: (x - y)z =(x + (- y))z =x×z + (-y)×z =x×z - y×z. ÿ
Обозначение. := a×b-1, если a, b - элементы поля, причем b¹ 0.
Теорема.В поле справедливы обычные правила работы с дробями:
(а) основное свойство дроби: ("c¹0)
;(б) правила сложения дробей:
, ;(в) правило умножения дробей:
;(г)
, еслиab ¹ 0;в частности, справедливо известное правило деления дробей.
Доказательство. (а) Действительно,
= (ac)×(bc)-1 = acc-1b = a×b-1 = .(б) Имеем:
= (a + c)×b-1 = a×b-1 + c×b-1 = . И далее на основании уже доказанных свойств получаем .Аналогично проверяются и два оставшихся пункта. ÿ
3. Арифметические функции: t(n), s(n), j(n).
10. Полная мультипликативность.
Определение. Числовой (арифметической) функцией называется функция, определенная на множестве Z+ целых положительных чисел и принимающая комплексные значения.
Числовая функция q называется вполне мультипликативной, если выполнены условия:
(1) ($x) q(x)¹0,
(2) для любых взаимно простых чисел x и y
q(xy)= q(x) q(y).
Заметим, что непосредственно из определения вытекает равенство
q(1)=1.
В самом деле, q(1)¹0, так как иначе данная функция q была бы нулевой; q(1)= q(1×1)= q(1) q(1), следовательно, q(1)=1.
Легко проверить, что каждая из следующих функций
q(x)=1, q(x)= x, q(x)= x-1,
вполне мультипликативна.
Следующая теорема позволяет существенно расширить запас вполне мультипликативных функций.
Теорема. Произведение вполне мультипликативных функций является вполне мультипликативной функцией.
Доказательство. Пусть числа x и y взаимно просты, а функции f и g вполне мультипликативны. Тогда, обозначив через h произведение функций f и g, имеем:
h(xy)=f(xy)g(xy)=f(x)f(y)g(x)g(y)=[f(x)g(x)][f(y)g(y)]=
=h(x)h(y).
Следствие. Для любого целого k функцияq(x)= xkвполне мультипликативна.
20. Сумма значений функции по всем делителям аргумента.
Введем в рассмотрение, наряду с функцией q(x), функцию
,
равную сумме всех значений функции q(d) при условии, что переменная d пробегает все делители числа x.
Теорема (основное тождество). Если x= , то
× .
В частности, если функция qвполне мультипликативна, то и функция также вполне мультипликативна.
Доказательство. Рассмотрим произведение сумм, находящееся в правой части требуемого равенства:
=
=
= .Осталось заметить, что для каждого набора (g1, g2,..., gk) целых неотрицательных чисел gi, не превосходящих ai, в сумме
каждое слагаемое встречается ровно один раз. Учитывая теперь, что каждый делитель числа имеет вид , получаем
= .Свойство полной мультипликативности рассматриваемой функции немедленно вытекает из того, что взаимно простые числа содержат различные простые сомножители. ÿ
30. Число делителей t(x) и сумма делителей s(x).
Рассмотрим следующие вполне мультипликативные функции:
t(x)= , где q(x)=1, - число делителей числа x,
s(x)= , где q(x) = x, - сумма делителей числа x.
Теорема. Справедливы тождества:
t( )=(a1 + 1)( a2 + 1)...( ak + 1),
s( )=
.Доказательство. а) Из определения функции t(x) немедленно следует указанное тождество, поскольку в силу основного тождества легко подсчитать число слагаемых, каждое из которых равно 1, в каждой из скобок соответствующего произведения.
б) Это тождество получается из основного тождества и формулы суммы членов геометрической прогрессии:
.ÿ
40. Функция Эйлера. Одной из важнейших числовых функций является следующая функция, впервые введенная в рассмотрение Эйлером.
Определение. Через j(x) обозначается количество чисел ряда
1, 2, ..., x, (*)
взаимно простых с числом x.