Определение 3. Система E называется базисом линейного пространства V, если всякий вектор пространства V однозначно записывается в виде линейной комбинации векторов системы E.
Заметим, что указанные определения равносильны.
40. Размерность линейного пространства.
Определение. Линейное пространство называется конечномерным, если оно обладает конечным базисом.
Определение. Число элементов в каком-нибудь базисе линейного пространства V называется его размерностью; обозначение dimV. Нулевое пространство имеет по определению пустой базис и нулевую размерность.
Отметим прежде всего теорему о корректности определения размерности.
Теорема. Всякие два базиса одного конечномерного пространства содержат одинаковое число векторов.
Доказательство. Пусть E и G - два базиса пространства V. Эти системы векторов линейно эквивалентны, т.е. они линейно выражаются друг через друга. Если бы одна система была “большой”, а другая “маленькой”, то “большая” система оказалась бы линейно зависимой в силу основной леммы о линейной зависимости, значит, обе они содержат одинаковое число векторов. ÿ
Следствие.
(а) Размерность линейной оболочки L(E) равна рангу системыE (ранг системы - максимальное число ее линейно независимых векторов): dim L(E) = r(E).
(б) Всякая система векторов n-мерного линейного пространства, содержащая более n элементов линейно зависима.
50. Примеры.
1. Координатное пространство kn имеет стандартный базис из единичных векторов ei := (0, . . . , 0, 1, 0, . . . , 0) ( единица находится на месте с номером i), следовательно, dim kn = n. Можно доказать, что система из n векторов-строк образует базис пространства knÛ определитель этой системы отличен от нуля.
2. Базис пространства решений однородной системы линейных уравнений - это фундаментальная система решений.
3. Пространство матриц
имеет стандартный базис из матричных единиц Eij (единица находится на месте с номером (i, j), следовательно,dim
= nm.4. Пространства многочленов Qn[x] с рациональными коэффициентами степени не превосходящей n имеет следующие базисы:
а) стандартный базис вида 1, x, x2, . . . , xn;
б) базис Тейлора “в точке c”:
1, (x - c), (x - c)2, . . . , (x - c)n , где c - некоторое число;
в) [базис Лагранжа “в точке (c1, . . . , cn+1)”:
gi(x) = {(x - c1) . . . (x - ci)^ . . . (x - cn+1)}/ {(ci - c1) . . . (ci - ci)^ . . . (ci - cn+1)},
где c1, . . . , cn+1 - попарно различные скаляры, а знак ^ означает отсутствие указанного множителя.]
Координаты многочлена f(x)
относительно стандартного базиса - это его коэффициенты;
относительно базиса Тейлора - это строка
;[относительно базиса Лагранжа - это строка (f(c1), . . . , f(cn+1)).]
5. Вещественное линейное пространство C имеет стандартный базис (1, i).
7. Основные теоремы о системах линейных уравнений
10. Исследование системы линейных уравнений.
Пусть задана система линейных уравнений: Ax = b, где A- основная матрица, x- столбец переменных, b - столбец свободных членов. С помощью элементарных преобразований строк в основной матрице можно построить максимальную систему единичных столбцов. Кроме того, удалим из расширенной матрицы нулевые строки. Тогда можно считать, что расширенная матрица системы уравнений имеет вид:
,где в последней строке ведущий элемент обозначен через d.
Для ненулевого числа d возможны два случая:
(а)d находится до черты, т.е. лежит в основной матрице. Следовательно, в этом случае мы можем написать общее решение совместной системы. Заметим, что все переменные будут связаны Û ранг основной матрицы равен числу переменных системы.
(б)d находится после черты; тогда система несовместна и ранг основной матрицы меньше ранга расширенной матрицы на единицу.
Тем самым, мы доказали теорему.
Теорема. Пусть d - ведущий элемент последней строки приведенной ступенчатой матрицы. Тогда
(а) система совместна Ûd находится до черты;
(б) система несовместна Ûd находится после черты;
(в) система является определенной Ûd находится до черты и все переменные связанные;
(г) система является неопределенной Ûd находится до черты и имеется хотя бы одна свободная переменная.
20. Критерии совместности и определенности.
Из приведенной теоремы немедленно вытекают следующие два критерия.
Критерий совместности (теорема Кронеккера-Капелли). Система Ax = b линейных уравнений является совместной Ûранг основной матрицы равен рангу расширенной матрицы, т.е. r(A) = r(A½b).
Критерий определенности. Система Ax = b линейных уравнений от n переменных является определенной Ûранг основной матрицы равен рангу расширенной матрицы и равен числу переменных в системе, т.е. r(A) = r(A½b) = n.
30. Связь между решениями совместной неоднородной и связанной с ней однородной системами линейных уравнений.
Допустим, что дана совместная системалинейных уравнений:
Ax = b. | (1) |
Пусть z0,z1,z2 - частные решения системы (1),z - ее общее решение. Тогда справедливы равенства Az1t = b, Az2t = b. Вычитая почленно из первого второе, на основании известных свойств, получаем: 0 = Az1t - Az2t = A(z1t - z2t) = A(z1 - z2)t, т.е. разность между двумя частными решения системы (1) является решением связанной с ней однородной системы
Ax = 0. | (2) |
Если теперьx - общее решение системы (2), то имеем Axt = 0, следовательно,
b = b + 0 = Az0t + Axt= A(z0t +xt) = A(z0 +x )t,
т.е. сумма частного решения системы (1) и общего решения системы (2) является решением системы (1).
Таким образом, справедлива
Теорема. Общее решение совместной неоднородной системы (1) является суммой частного решения системы (1) и общего решения системы (2).
Поскольку общее решение однородной системы может быть записано в виде линейной комбинации ФСР, то получаем, что общее решение системы (1) можно записать в следующей параметрической форме:
z = z0 + a1x1 + a2x2 + . . . + amxm,
где z0 - какое-нибудь частное решение системы (1); x1, x2, . . . , xm - ФСР системы (2),
a1, a2, . . . , am - действительные параметры; m = n - r(A).
8. Корни многочлена; схема Горнера; теорема Безу
10. Корни многочлена.
Определение.Числоcназывается корнем многочлена f, еслиf(c)=0.
Другими словами, число c является корнем многочлена f, если
a0cn+ a1cn-1 + ... + an- 1c + an = 0.
Это равенство означает, что число c является корнем уравнения
a0 xn+ a1xn-1 + ... + an- 1x + an = 0,
при подстановке вместо x числа c получается верное равенство. Поэтому корень многочлена f и корень соответствующего уравнения f(x) = 0 - это одно и то же.
Схема Горнера позволяет проверять, является ли данное число c корнем данного многочлена или нет: с ее помощью мы как раз и вычисляем значение f(c).
Если требуется проверить несколько значений c, то для экономии выкладок строят не три отдельные схемы, а одну - объединенную. Например, для многочлена
f = 3x5 - 5x4 - 7x2 + 12
и чисел c = 1,-1,2 составляется таблица
3 | -5 | 0 | -7 | 0 | 12 | |
1 | 3 | -2 | -2 | -9 | -9 | 3 |
-1 | 3 | -8 | 8 | -15 | 15 | -3 |
2 | 3 | 1 | 2 | -3 | -6 | 0 |
Конечно, при заполнении третьей и четвертой строки таблицы работает" только первая строка - строка коэффициентов многочлена f.
Мы видим, в частности, что из трех рассмотренных чисел только c = 2 является корнем данного многочлена.
20. Теорема Безу.
Теорема Безу. Пустьf - многочлен, c - некотороечисло.
1. fделится на двучленx - cтогда и только тогда, когда число c является его корнем.
2. Остаток от деления f на x - c равен f(c).
Доказательство. Сначала мы докажем второе утверждение. Для этого разделим fc остатком на x - c: