Смекни!
smekni.com

Производная и ее применение в алгебре, геометрии, физике (стр. 2 из 9)

Доказательство. Уг­ловой коэффициент касатель­ной:

tgφ = tg(limα),

так как, по предыдущему, φ = limα.

Исключая случай φ = π/2,

в силу непрерывности тангенса имеем: tg(limα) = limtgα.

Поэтому tgφ = limtgα.

По формуле (VI) для СМ (черт.) имеем:

tgα=(f(x+Δx) -f (x))/Δx

Переходя к пределу при Δx→0 (точка М при Δx→ 0 неограниченно приближается к С, а угол αφ), имеем:


Следовательно, (IV)

Геометрический смысл производной

. Справедлива обратная теорема, выражающая геометрический смысл производной: если функция y=f(x) имеет определенную производную в точке х, то:

1) в этой точке имеется касательная к графику функции,

2) угловой коэффициент ее равен значению производ­ной f '(x) в точке х.

Д о к а з а т е л ь с т в о. По условию, существует предел отно­шения Δy/Δx. Но отношение Δу/Δx есть тангенс угла секущей СМ (черт.).

Δy/Δx=tgx (1)

Значит, согласно условию, существует

Из равенства (1) следует:

α=arctg(Δy/Δx).

Вследствие непрерывности арктангенса, имеем:


Но, по условию, существует и равен числу f '(х). Поэтому


Полагая arctgf '(x)=φ, получаем:


Следовательно, существует предел α. Значит, существует прямая, проходящая через точку С, угол которой с Ох равен Такая прямая есть касательная в данной точке С[х, f(x)] и ее угловой

коэффициент t = f '(x).

. Замечания. 1. Угловой коэффициент kпрямой y=kx+bназывается наклоном прямой к оси Ох. На­клоном кривой y=f(x) вточке 1, у1) называется угловой коэффициент касательной к кривой, он равен значению производной в этой точке, т. е. tgφ = f '(х1).

2. Если касательная в точке 1, y1) кривой y=f(x) образует с Ох: а) острый угол φ, то производная f '(x)>0, так как tgφ >0 (черт.); б) тупой угол φ, то производная f '(х1)<0, так как tgφ<0 (черт.). Если касательная параллельна оси Оx (черт.), то угол φ=0, tgφ=0 и f '(х1) = 0.

Когда касательная перпендикулярна оси Ох, то стрем­ление α к π/2 может дать один и тот же бесконечный пре­дел как «справа», так и «слева»: tgφ= + ∞ (черт.) пли tgφ=- ∞(черт.), или давать «слева» и «справа» бесконечные пределы разного знака (на черт. в точке С «слева» tgφ = +∞, а «справа» tgφ= - ∞). В первом случае, в точках А и В, функция f(x), говорят, имеет бесконечную производ­ную; во втором случае, в точке С, не существует ни конечной, ни бесконечной производной.

Заметим, что бесконечные производные рассматриваются лишь в точках непрерывности функции f(x).

3. Функция называется дифференцируемой в точке х, если ее производная в этой точке конечна. Функция f(x) дифференцируема в промежутке а<х<b, если ее про­изводная f '(х) конечна в каждой точке промежутка.

4. Кривая, имеющая касательную, иногда расположена по обе стороны касательной (черт.). В этом случае говорят, что касательная пересекает кривую.

. Прямая, проходящая через точку касания перпендикулярно к касательной, называется нормалью к кривой. Согласно условию взаимной перпендикулярности прямых, угловой коэффициент нормали есть -1/f '(x1).

Зависимость между дифференцируемостью и непрерывностью функции

. Теорема. Если функция y=f(x) имеет в точ­ке х определенную производную, то она непрерывна в этой точке.

Доказательство. Напишем тождество:

Δy=(Δy/Δx)*Δx

так как всегда считаем Δx ≠ 0. При стремлении Δx к нулю отношение Δy/Δx имеет определенный предел (по условию) и, следовательно, есть величина ограниченная, Δx; есть бесконечно малая. Поэтому произведение (Δy/Δx)*Δx есть бес­конечно малая величина, предел ее равен нулю, т. е.


Следовательно, данная функция y=f(x) непрерывна.

, Обратная теорема неверна: непрерывная функция может не иметь производной. Например, функция:

y = |х|

(черт.) в точке x = 0 непрерывна. В то же время в точке х = 0 определенной касательной не существует, функция не дифференцируема.

. Следствие. В точке разрыва функция не имеет производной.

Впервые отчетливое различие между понятием непре­рывности и дифференцируемости было дано гениальным русским ученым Н. И. Лобачевским.

ПРОИЗВОДНЫЕ ОТ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

Производная постоянной

Теорема Постоянная функция имеет в любой точке x производную, равную нулю.

Дано: y=c (черт.).

Требуется доказать: с’=0.

Доказательство: Для любого значения x и для всякого приращения Δx приращение функции Δy равно нулю, также равно нулю и отношение Δxy.

Отсюда


Таблица элементарных производных

Функция Ее производная
xp px p-1, pÎR
c (c-const) 0
1/x -1/x2

____√x

____

1/2√x

ex ex
sin x cos x
cos x -sin x
tg x 1/cos2x
ctg x -1/sin2x
y = up pu’up-1
ln x 1/x
ax ax lna, a>0
log a x 1/(x lna), a>0, a¹0
arcsinx

___________1/Ö1-x2

arccosx

____________-1/Ö1-x2

arctg x 1/(1+x2)
arcctg x -1/(1+x2)

Правила дифференцирования

Пусть c – постоянная, f(x) и g(x) – дифференцируемые функции, тогда

c = 0;

(c * f(x))’ = c * (f(x))’;

(f(x) + g(x))’ = f ‘(x) + g ‘(x);

(f(x) * g(x))’ = f ‘(x) * g(x) + f(x) * g ‘(x);

(f(x)/g(x))’ = (f ‘(x) * g(x) – f(x) * g ‘(x))/g2(x);

ИЗУЧЕНИЕ ФУНКЦИЙ С ПОМОЩЬЮ ПРОИЗВОДНОЙ

Признаки постоянства, возрастания и убывания функций

Будем считать, что рассматриваемая функция y=f(x) определена и дифференцируема в каждой точке отрезка axb.

. Известно, что постоянная функция имеет в каждой точке отрезка производную, равную нулю. В полных курсах анализа доказывается обратное, что функция f(x) постоянна на отрезке [а, b], если в каждой точке отрезка ее производная f '(х) равна нулю.

Иллюстрируем это геометрически. Если f ' (x) = 0 в каждой из точек отрезка [а, b], то касательная к графику функции y=f(x) в каждой из точек х (а ≤х ≤ b) параллельна оси Ох. При переходе х от одного значения к его последующим значениям точка М. графика функции, являющаяся точкой прикосновения касательной, сдвигается вправо, но остается на направлении касательной, проведенной вточке М, так как касательная при этом переходе не меняет своего направления. Вследствие этого на отрезке [а, b]

график функции y=f(x) обращается в прямую MN, параллельную оси Ох, а значение функции, равное f(а), остается неизменным (черт.).

. Если в промежутке a<x<b функция y=f(x) возрастающая (черт.), то при увеличении х каждое последующее ее значение более предыдущего и потому для каждого данного значения х приращения Δx и Δу положительны, отношение Δy/Δx положительно и при стремлении Δx к нулю принимает только