Смекни!
smekni.com

Производная и ее применение в алгебре, геометрии, физике (стр. 4 из 9)

Максимум (минимум) функции может не быть наибольшим (наименьшим) значением ее. Так, изображенная на черт. 113 функция имеет в точке с. значение, большее максимумов с1М1и с3М2, а в точке с0 значение, меньшее минимума c2m1, и c4m2, минимум c4m2больше максимума с1М1. Максимум (минимум) функции в данной точке вообще есть наибольшее (наименьшее) значение функции по сравнению с ее значениями в точках, лежащих слева и справа от точки экстремума лишь в достаточной близости к ней.

Признаки существования экстремума

. Теорема (необходимый признак). Если в окрестности 2δточки х=с:

1) функция f(х) дифференцируема, 2) значение х=с есть точка экстремума функции f(x), то ее производная в точке с равна нулю, m. e. f '(c) = 0.

Доказательство. Пусть для определенности х=cесть точка максимума (черт. 111). Представим значения независимого переменного х левой полуокрестности точки с в виде с — Δx:, а правой в виде с+ Δx, где 0< Δx < δ. Значение функции f(x) в точке с есть f(c), в левой полуокрестности оно равно f(с — Δx), а в правой f(c + Δx). Значения f(x) в окрестности 2δ точки с поставлены, таким образом, в зависимость от значений Δx, причем значение х = с -/+ Δx неограниченно приближается к числу с, если Δx стремится к нулю.

По определению максимума функции:

f(c- Δx)<f(c) и f(c + Δx)<f(c).

Отсюда:

f(cx)-f(c)<0 иf(c + Δx)-f(с)<0.

Левые части неравенств выражают приращение функции в точке х = с при изменении аргумента соответственно на — Δx и + Δx. Составив отношение приращения функции к приращению аргумента, получаем:

(f(c —Δx)—f(с))/(-Δx))>0 (1); (f(с + Δx)—f(с)/(+Δx))<0 (2) Оба отношения (1) и (2) имеют один и тот же предел при Δx → 0, так как по условно функция f(x) имеет в точке с определенную произвольную:

Из неравенства (1) следует, что f '(с) либо положительна, либо равна нулю, а неравенство (2) показы­вает, что f '(с) не может быть положительной. Следовательно,

f‘(c) = 0,

что и требовалось доказать.

. Теорема (достаточный признак). Если в окрестности 2δ точки x = с:

1) функция f(x)непрерывна,

2) ее производная, f '(х), слева от точки х = с по­ложительна, а справа отрицательна, то значение х = с есть точка максимума функции.

Доказательство. Данная функция непрерывна в точке c, поэтому число f(с) есть общий пре­дел для f(c — Δx) и f(c+Δx) при Δx → 0 (как и в предыдущей теореме, здесь и в последующем 0 < Δx< δ):

Данная функция f(x) в левой полуокрестности точки с — возрастающая, так как ее производная слева от точки с положительна, а в правой полуокрестности — убывающая, так как ее производная справа от точки с отрицательна (черт.), и вследствие этого ее значения

f(c —Δx) иf(c+Δx)

возрастают при стремлении Δx к нулю (по определению убывающей функции, меньшему значению аргумента отвечает большее значение функции, т. е. при x1>x2f(x1)<f(x2)).

Другими словами, как f(c — Δx), так и f(c+Δx) приближаются к своему пределу f(с) так, что для каждого значения Δx ≠ 0:

f(c - Δx) < f(c) иf(c + Δx) < f(c).

Но в таком случае f(c) есть максимум функции f(x) в точке х = с.

. Так же можно доказать, что если в окрестности 2δ точки х = с:

1) функция f(x) непрерывна, 2) производная f '(x) слева от точки х = с отрицательна, а справа положительна, то значение х = с есть точка минимума функции (черт.).

. Как в точке максимума, так и в точке минимума производная равна нулю (1°). Обратное неверно. Функция может не иметь ни максимума, ни минимума в точке, в которой производная равна нулю.

Например, функция у =х3 имеет в точке x =0 производную, равную нулю. Однако в точке х = 0 нет ни максимума, ни минимума, функция у = х3при всех значениях х, в том числе и при x = 0, возрастает. Отсюда, в точке х=с функция f(x) не имеет на максимума, ни минимума, если при х = с ее производная равна нулю и имеет один и тот же знак как слева, так и справа от точки х = с.

. Определение. Значения аргумента х, при которых производная f '(х) равна нулю, называются стационарнымиточками.

Касательная в стационарных точках параллельна оси Ох. В окрестности точки максимума касательная состав­ляет с осью абсцисс острый угол, если точка лежит слева от точки максимума, и тупой угол, если справа от нее (черт.). В случае минимума, напротив, касательная составляет с осью абсцисс тупой угол, если точка находится слева от точки минимума, и острый, если справа от нее (черт.).

Правило нахождения экстремума

. Чтобы найти экстремум функции, надо:

1) найти производную данной функции;

2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;

3) определить знак производной в каждом из промежутков, отграниченных стационарными точками;

4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;

5) затенить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.

Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной.

Нахождение экстремума при помощи второй производной

. Лемма. Если при х = с производная положительна (или отрицательна), то в достаточно малой окрестности точки х = с приращение функции и приращение аргумента в точке с имеют одинаковые (или разные) знаки.

Доказательство от противного. Пусть для определенности f '(c)>0, т. е.

Предположим, что при стремлении ∆x к нулю приращения yи ∆x имеют разные знаки. Тогда отношение ∆y/∆x отрицательно и его предел

f '(c) ≤ 0,

что противоречит условию.

Так же доказывается и вторая часть леммы.

. Теорема. Если при х = с первая производная функции f(x) равна нулю, f '(c)=0, а вторая производная положительна, f "(c)>0, то в точке х = с функция f(x) имеет минимум;

если же вторая производная отрицательна, f "(с) < 0, то в точке х = с функция f(x) имеет максимум.

Доказательство. Вторая производная по отношению к первой производной является тем же, чем первая производная по отношению к данной функции, т. е.

Согласно лемме, если при х = с производная (в данном случае вторая) положительна, то в достаточно малой окрестности 2δ точки с приращение функции (в данном случае первой производной) имеет тот же знак, что и приращение аргумента. Слева от точки с приращение аргумента отрицательно, значит, и приращение функции отрицательно, т.е.

f '(c — ∆x)—f(c)<0, (0 < ∆x < δ).

Отсюда:

f '(c-∆x)<f '(c) = 0. (1).

Справа от точки с приращение аргумента положительно, т. е.

f '(c +∆x)-f '(c)>0.

Отсюда:

f '(c + ∆x)>f '(c) = 0. (2)

Получили: первая производная функции f(x) слева от точки с отрицательна (1), а справа положительна (2). Значит, в точке х = с функция f(x) имеет минимум, как это и требовалось доказать.