Так же доказывается теорема и в случае f "(с)<0.
3°. Доказанная теорема определяет второй способ нахождения экстремума. Он отличается от первого тем, что третья и четвертая операции первого способа заменяются: а) нахождением второй производной и б) определением ее знака в стационарной точке. Результат исследования можно выразить так:
Если знак числа f "(с), | то при х = с f(x) имеет |
плюс минус | минимум максимум |
Если f '(с) = 0, то исследование функции на максимум и минимум надо провести первым способом.
4°. Пример 1. Исследовать вторым способом на максимум и минимум функцию: у = 5 — х2 — х3 — x4/4.
Решение. 1. Находим первую производную:
y ' = - 2х - Зx2 — x3
2. Приравниваем первую производную нулю и решаем полученное уравнение:
— 2x — Зx2 — x3 = 0, или x(x2+3х+2) = 0,
отсюда x = 0 или x2+ 3х + 2 = 0.
Решая квадратное уравнение x2 + 3х + 2 = 0, получаем:
x = (-3 + 1)/2.
Стационарных точек три: x1 = — 2, x2 = — 1 и х3 = 0.
3. Находим вторую производную:
у" = — 2 - бx — Зx2.
4. Определяем знак второй производной, заменяя х его значением сначала в первой, затем во второй и потом в третьей стационарной
точке:
при х = — 2 у'' = — 2 — 6(— 2) — 3(— 2)2 = — 2, при х = — 1 у" = — 2 — 6(— 1) — 3(— l)2 = + 1, при x = 0 у" = — 2.
Следовательно, данная функция имеет минимум при х = —1 и максимум при х = — 2 и при х =0,
Пример 2, Исследовать на максимум и минимум функцию: у = х4.
Решение: 1)y' = 4x3;
2) 4х3 = 0; х = 0;
3) y" = 12x2;
4) при х = 0 y" = 0.
Так как оказалось, что вторая производная равна нулю, то исследование ведем первым способом: при х < 0у' = 4x3 < 0, а при х > 0 у' = 4x3 > 0. Следовательно, функция у = х4имеет минимум в точке x = 0.
5°. Второй способ нахождения экстремума имеет смысл применять в том случае, когда вторая производная отыскивается просто; если же дифференцирование сопровождается трудными преобразованиями и не упрощает выражение первой производной, то первый способ может быстрее привести к цели.
Направление вогнутости кривой
Пусть две точки M1 и M2 имеют одну и ту же абсциссу. Если при этом ордината точки M1более (менее) ординаты точки M2, то говорят, что точка M1 лежит выше (ниже) точки M2. Говорят также, что в промежутке а<х<bлиния y = f(x) лежит выше (ниже) линии у=φ(х), если в этом промежутке каждая точка первой линии лежит выше (ниже) соответствующей ей точки второй линии, т. е. если
f(x)> φ(x) [или f(x)< φ(x)].
Определение. В промежутке а < х < b кривая— график дифференцируемой функции y=f(x) — называется вогнутой вверх (вниз), если она лежит выше (ниже) касательной в любой точке данного промежутка.
Кривая, изображенная на черт., является вогнутой, вверх в промежутке а < х < bи вогнутой вниз в промежутке b < х < с.2°. В более подробных курсах анализа доказывается, что если производная f '(х) — возрастающая (убывающая) функция в промежутке а < х < b, то кривая y=f(х) является вогнутой вверх (вниз) в этом промежутке.
Чтобы уяснить эту теорему, наметим на оси Ох (черт.)
произвольно ряд точек и проведем через каждую из них
прямую так, чтоб и угловом коэффициент прямой возрастал с возрастанием абсциссы намеченных точек; затем, приняв эти прямые за касательные к некоторой кривой линии [tgφ = f '(x)], построим эту кривую линию. Мы видим, что она может лежать только выше каждой из проведенных касательных.
3°. Достаточный признак вогнутости вверх (вниз). Если в промежутке а<х<b вторая производная f ''(x) положительна (отрицательна), за исключением отдельных точек, в которых она равна нулю, то кривая у=f(х) в этом промежутке вогнута вверх (вниз).
Действительно, если в промежутке а<х<bвторая производная f "(x), например, положительна, за исключением отдельных точек, в которых она равна нулю, то первая производная f '(х)—возрастающая функция, а кривая y = f(x), согласно предыдущему, является вогнутой вверх.
Если f "(x) = 0 не в отдельных точках, а в некотором промежутке, то в этом промежутке f '(x) — постоянная функция, af(x) — линейная функция, график ее — прямая линия, и говорить о вогнутости не имеет смысла.
Точки перегиба
1°. Определение, Если в некоторой окрестности точки х = с кривая —график дифференцируемой функции y = f(x) — имеет слева и справа от точки х = с вогнутости противоположного направления, то значение х = с называется точкой перегиба.
Точку М кривой (черт.), абсцисса которой х = с, называют также точкой перегиба, она отделяет дугу кривой, вогнутую вверх, от дуги, вогнутой вниз. Точкой перегиба может быть только та точка, в которой к кривой имеется касательная. В окрестности точки перегиба кривая лежит по обе стороны от касательной: выше и ниже ее. Заметим, что она расположена также по обе стороны от нормали. Но такая точка, как Р (черт.), в которой единственной касательной не имеется, точкой перегиба не является.2°. Так как слева и справа от точки перегиба х = с вогнутости кривой y=f(x) разного направления, то вторая производная f "(x) имеет слева и справа от точки х = с разные знаки или равна нулю. Полагая вторую производную непрерывной и окрестности точки х = с, заключаем, что в точке перегиба она равна нулю, т. е.
f(c) = 0.
3°. Отсюда следует правило нахождения точек перегиба:
1) найти вторую производную данной функции;
2) приравнять ее нулю и решить полученное уравнение (или найти те значения х, при которых производная теряет числовой смысл), из полученных корней отобрать действительные и расположить их no величине от меньшего к большему;
3) определить знак второй производной в каждом, из промежутков, отграниченных полученными корнями;
4) если при этом в двух промежутках, отграниченных исследуемой точкой, знаки второй производной окажутся разными, то имеется точка перегиба, если одинаковыми, то точки перегиба нет.
4°. Примеры. Найти точки перегиба и определить промежутки вогнутости вверх и вниз кривых:
1) у = lп х.
Р е ш е н и е. Находим вторую производную:
y '=1/x; y ''= -1/x2.
При всяком значении x = (0 < х <+∞) у" отрицательна. Значит, логарифмика точек перегиба не имеет и обращена вогнутостью вниз.
2) у = sinx.
Решение. Находим вторую производную:
y' =cos x, y'' = -sin x.
Полагая - sinx = 0, находим, что x = kπ, где k - целое число.
Если 0 < x< π, то sinx положителен и y '' отрицательна, если же π < x< 2π, то sinx отрицателен и y'' положительна и т. д. Значит, синусоида имеет точки перегиба 0, π, 2π,...
В первом промежутке 0 < x< π она обращена вогнутостью вниз, во втором - вогнутостью вверх и т. д.
Механическое значение второй производной
Предположим, что точка движется прямолинейно и пройденный ею путь определяется уравнением s = f(t), где t время. Скорость vв момент времени tесть производная от пути по времени, т. е.
v=ds/dt.
Скорость изменения скорости в момент времени tесть ускорение а,
a=(v)' = (ds/dt)' = (d2s/dt2).
Вторая производная от пути по времени есть ускорение прямолинейного движения в данный момент времени.
Пример. Прямолинейное движение точки совершается по закону:
s = (t3 — 2) м.
Определить ускорение в момент t = 10 сек.
Решение. Ускорение а = d2s/dt2.
Дифференцируя функцию s=t3 — 2, находим d2s/dt2 =6t
Следовательно,
a = 6t = 6*10 = 60; a = 60 м\сек2.
2°. Если движение неравномерное, то сила F, производящая его, непостоянна, каждому моменту времени tсоответствует определенное значение действующей силы F, и сила, таким образом, есть функция времени t, F=f(t).
По закону Ньютона, в каждый момент времени действующая сила Fравна произведению массы т на ускорение а, т. е.
F=ma, илиf(t) = ma.
При прямолинейном движении a =d2s/dt2, поэтому
f(t) = m*d2s/dt2.
Зная уравнение прямолинейного движения, можно дифференцированием найти значение действующей силы в каждый момент времени.
Пример. Определить силу, под действием которой материальная точка совершает прямолинейные колебания по закону
s = А*sin(ωt + ω0).