(V)
В математике производную применяют для:
1. Исследования функции на монотонность, экстремумы.
2. Нахождения касательной к графику.
3. Нахождения наибольших, наименьших значений функций.
4. Нахождения дифференциала для приближенных вычислений.
5. Для доказательства неравенств.
Рассмотрю некоторые примеры применения производной в алгебре, геометрии и физике.
Задача1. Найти сумму 1+2*1/3+3(1/3)2+…+100(1/3)99;
Решение.
Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.
Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.
Ясно, что f ’(x)=g(x).
f(x) — сумма геометрической прогрессии.
Легко подсчитать, что f(x)=(x—x101)/(1—x). Значит,
g(x) = f ’(x) = ((1—101x100)(1—x)—(x—x100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.
Подставлю x = 1/3.
Ответ: 0,25(9—205*3-99)
Задача2. Найти сумму 1+2*3+3*32+…+100*399;
Решение.
Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.
Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.
Ясно, что f ’(x)=g(x).
f(x) — сумма геометрической прогрессии.
Легко подсчитать, что f(x)=(x—x101)/(1—x). Значит,
g(x) = f ’(x) = ((1—101x100)(1—x)—(x—x100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.
Подставлю x = 3.
Ответ: ≈ 2,078176333426855507665737416578*1050.
Задача 3. Найдите площадь треугольника AMB, если A и B — точки пересечения с осью OX касательных, проведенных к графику y = (9—x2)/6 из точки M(4;3).
Решение.
т. A = укас1∩OX Решение:т. B = укас2∩OXукас =y(x0)+у’(x0)(x—x0);
y = (9—x2)/6 y’(x0) = -2x*1/6 = -x/3;
M(4;3)________ т.к. укас проходит через M(4;3), то
SAMB —? 3 = (9—x02) — (4—x0)* x0/3 | *3
18 = 9—x02—2x0(4—x0);
x02—8 x0—9 = 0;
Д/4 = 16 + 9;
x0 = 4+5 = 9;
x0 = 4—5 = -1
укас1 = -12 — (x—9)*9/3 = -3x+15;
укас1 = 4/3 + (x+1)*1/3 = x/3+5/3;
A(5;0); B(-5;0);
AM = √10 (ед.);
AB = 10 (ед.);
BM = 3√10 (ед.);
p — полупериметр; __
p = (4√10 + 10)/2 = 2√10 + 5;
__ __ __ __ __ __
S = √(2√10 + 5) (2√10 + 5—√10) (2√10 + 5—3√10) (2√10 + 5—10) =
= √(2√10 + 5)(√10 + 5)(5—3√10)(2√10—5) =
= √(40—25)(25—10) = 15 (ед2);
Ответ: 15 (ед2).
Задача 4. Какая наименьшая плоскость может быть у треугольника OAB, если его стороны OA и OB лежат на графике функции y = (|x|—x)/2, а прямая AB проходит через точку M(0;1).Решение:
-x, x<0y =
0, x>0
A(a;-a); B(b;0);_
AO = |a|√2 = -a√2 (т.к. a<0);
BO = b;
Для т. B:
у1 = kx +z;
т.к. у1—график линейной пропорциональности, проходящий через т M(0;1), то z = 1.
0=kx+1;
k=-1/b;
Для т. A:
у1=kx+1;
-a=kx+1;
k=(-1-1a)/a;
у1A= у1B
(-a—a)/a = -1/b;
b+ab=a;
a(1—b)=b;
a = b/(1-b);
S∆AOB=0,5*AO*OB*sin/_AOB
ÐAOB =180o—45o = 135o
S∆AOB=0,5*(√2/2)* (-a)b√2 = -ab/2;
S∆AOB = -b2/(2(1—b)) = b2/(2(1—b)); D(y): b>1(т.к. при b<1 необразует ∆AOB.);
т.к. функция непрерывна и дифференцируема на b>1, то найду ее производную:
S’ = (4b(b—1)—b2)/(4(b—1)2) = (4b2—4b—2b2)/(4(b—1)2) = 2b(b—2)/(4(b—1)2) =
= b(b—2)/(2(b—1)2);
S’ = 0;
точки экстремума:
b=0;b=1;
b=2;
но b>1, значит
Sнаим =S(2) = 4/(2(2—1))=2(ед2);
Ответ: 2 ед2.
Задача 5. В прямоугольном параллелепипеде ABCDA1B1C1D1 с ребрами CD = 24, AD= 6 и DD1=4 проведена плоскость через центр симметрии грани A1B1C1D1 ,вершину А и точку Р, лежащую на ребре DC. Какую наименьшую площадь может иметь сечение параллелепипеда этой плоскостью? На какие части делит точка P ребро DC в этом случае?
Решение. Проведем плоскость и построим сечение (рис.). АО Î АA1C1С - линия, принадлежащая данной плоскости. Продолжим АО до пересечения сCC1в точкеS. ТогдаSP - линия пересечения граниDD1C1Cи данной плоскости, а сечениеANMP - параллелограмм. Sсеч = SAMNP = SK*AP/2 , потому чтоSK/2— высота параллелограммаANMP. Это видно из следующего рассуждения.
В ΔASC ОC1 - средняя линия (значит SC1 = 4), в ΔPSC также средняя линия МC1, а плоскость A1B1C1D1 делит пополам любую линию между S и плоскостью ABCD, а значит и SK.Пусть PC = x; ΔCLP подобен ΔDAP,
LC/AD = x/(24—x), LC = 6x/(24—x);_____________ ____________
ИзΔCLP: KC= (6x*x/(24—x))/(√(36x2/(24—x)2)+x2) = 6x/(√(36+ (24—x)2);
________ ___________________ __________________
ИзΔSCK: SK = √SC2+ KC2 = √64+36x2/(36+(24—x)2) = 2√16+9x2/(36+(24—x)2) ;
Из ΔADP: AP = √36+(24—x)2;_____ _________________ __________________
Sсеч = AP*SK/2 = 0,5*(√36+(24—x)2) 2√16+9x2/(36+(24—x)2) = √16(36+(24—x)2)+9x2;
Если S’(x) = 0, то 18x+16*2(24—x)(-1) = 0;
50x—32*24 = 0, x = 32*24/50 = 32*12/25 = 384/25 (это точка min);
Sсеч = 312;
DP = 24—16*24/25 = 216/25;
Ответ: 312 кв. ед.; DC: 384/25; 216/25.
Задача 6. Высота пирамиды TABC с основанием ABC проходит через середину ребра AC. Выберите на AC точку М так, чтобы площадь сечения пирамиды плоскостью, проходящей через точку M, середину ребра TC и вершину B, была наименьшей, если AB=BC=AC=TC=2.Решение. HF=FC=1/2;
S∆BME = BM*EK*1/2;___ _
Из∆TCH => TH = √4—1=√3;
EF = TH/2=√3/2;
ПустьMC = x.
Из ∆BMC по теореме косинусов MB2= x2+4—2*2*x*1/2;
MB = √x2—2x+4; _ _
S∆BMC = 0,5*MC*BC*sinC=(x/2)*2√3 /2 = x√3/2;
S∆BMC = 0,5*BM*PC, _ ________
PC = (2S∆BMC)/BM, PC = x√3/√x2—2x+4 ;
∆KMF подобен ∆PMC(по двум углам):
KF/PC= MF/MC(рис 2),_____ _ _________
KF = x√3(x—1/2)/(x√x2—2x+4) = √3(x—1/2)/(√x2—2x+4);
________ ______________________
Из ∆KEF =>KE = √ KF2+EF2 = √3(x—1/2)2/(x2—2x+4)+3/4; _
S∆BME = 0,5√x2—2x+4 *√3(x—1/2)2/(x2—2x+4)+3/4 = 0,5√3(x—1/2)2+(x2—2x+4)*3/4;
Если S’(x) = 0, то
6(x—1/2)+(2x—2)*3/4 = 0;
15x—9 = 0;
x = 3/5; __
S(3/5) = √15/5 кв.ед.
Ответ: √15/5 кв.ед.
Задача 7. В сферу радиусом R вписана правильная треугольная пирамида, у которой боковое ребро образует с высотой пирамиды угол 60o. Какую наименьшую площадь может иметь треугольник MBK, если точка Mлежит на апофеме пирамиды, а BK—высота основания пирамиды, не пересекающая апофему?
Решение. TP = 2R, ÐATO = 60o.
ПустьAB = BC= CA = a(рис.)
Тогда AO = a√3/3,
AD = BK = a√3/2, _ _
TO = AO*ctg60o= a√3/3*1/√3 = a/3,