Смекни!
smekni.com

Производная и ее применение в алгебре, геометрии, физике (стр. 7 из 9)

Так как ∆у = f(х + ∆x)—f (x), то, заменяя в формуле (IV) ∆у его выражением, имеем: f(x+∆x) - f(x) ≈ f '(x)* ∆x


(V)

В математике производную применяют для:

1. Исследования функции на монотонность, экстремумы.

2. Нахождения касательной к графику.

3. Нахождения наибольших, наименьших значений функций.

4. Нахождения дифференциала для приближенных вычислений.

5. Для доказательства неравенств.

Рассмотрю некоторые примеры применения производной в алгебре, геометрии и физике.

Задача1. Найти сумму 1+2*1/3+3(1/3)2+…+100(1/3)99;

Решение.

Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.

Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.

Ясно, что f ’(x)=g(x).

f(x) — сумма геометрической прогрессии.

Легко подсчитать, что f(x)=(xx101)/(1—x). Значит,

g(x) = f ’(x) = ((1—101x100)(1—x)—(xx100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.

Подставлю x = 1/3.

Ответ: 0,25(9—205*3-99)

Задача2. Найти сумму 1+2*3+3*32+…+100*399;

Решение.

Найду сумму g(x)=1+2x+3x2+…+100x99 и подставлю в нее x=1/3.

Для этого потребуется вспомогательная функция f(x)=x+x2+…+x100.

Ясно, что f ’(x)=g(x).

f(x) — сумма геометрической прогрессии.

Легко подсчитать, что f(x)=(xx101)/(1—x). Значит,

g(x) = f ’(x) = ((1—101x100)(1—x)—(xx100)(-1))/(1—x)2=(1—102x100+101x101)(1—x)2.

Подставлю x = 3.

Ответ: ≈ 2,078176333426855507665737416578*1050.

Задача 3. Найдите площадь треугольника AMB, если A и B — точки пересечения с осью OX касательных, проведенных к графику y = (9—x2)/6 из точки M(4;3).

Решение.

т. A = укас1OX Решение:

т. B = укас2OXукас =y(x0)+у’(x0)(xx0);

y = (9—x2)/6 y’(x0) = -2x*1/6 = -x/3;

M(4;3)________ т.к. укас проходит через M(4;3), то

SAMB —? 3 = (9—x02) — (4—x0)* x0/3 | *3

18 = 9—x02—2x0(4—x0);

x02—8 x0—9 = 0;

Д/4 = 16 + 9;

x0 = 4+5 = 9;

x0 = 4—5 = -1

укас1 = -12 — (x—9)*9/3 = -3x+15;

укас1 = 4/3 + (x+1)*1/3 = x/3+5/3;

A(5;0); B(-5;0);

AM = √10 (ед.);

AB = 10 (ед.);

BM = 3√10 (ед.);

p — полупериметр; __

p = (4√10 + 10)/2 = 2√10 + 5;

__ __ __ __ __ __

S =(2√10 + 5) (2√10 + 5—√10) (2√10 + 5—3√10) (2√10 + 5—10) =

= √(2√10 + 5)(√10 + 5)(5—3√10)(2√10—5) =

= √(40—25)(25—10) = 15 (ед2);

Ответ: 15 (ед2).

Задача 4. Какая наименьшая плоскость может быть у треугольника OAB, если его стороны OA и OB лежат на графике функции y = (|x|—x)/2, а прямая AB проходит через точку M(0;1).

Решение:

-x, x<0

y =

0, x>0

A(a;-a); B(b;0);_

AO = |a|√2 = -a√2 (т.к. a<0);

BO = b;

Для т. B:

у1 = kx +z;

т.к. у1—график линейной пропорциональности, проходящий через т M(0;1), то z = 1.

0=kx+1;

k=-1/b;

Для т. A:

у1=kx+1;

-a=kx+1;

k=(-1-1a)/a;

у1A= у1B

(-a—a)/a = -1/b;

b+ab=a;

a(1—b)=b;

a = b/(1-b);

S∆AOB=0,5*AO*OB*sin/_AOB

ÐAOB =180o45o = 135o

S∆AOB=0,5*(√2/2)* (-a)b√2 = -ab/2;

S∆AOB = -b2/(2(1—b)) = b2/(2(1—b)); D(y): b>1(т.к. при b<1 необразует ∆AOB.);

т.к. функция непрерывна и дифференцируема на b>1, то найду ее производную:

S’ = (4b(b—1)—b2)/(4(b—1)2) = (4b2—4b—2b2)/(4(b—1)2) = 2b(b—2)/(4(b—1)2) =

= b(b—2)/(2(b—1)2);

S’ = 0;

точки экстремума:

b=0;

b=1;

b=2;

но b>1, значит

Sнаим =S(2) = 4/(2(2—1))=2(ед2);

Ответ: 2 ед2.

Задача 5. В прямоугольном параллелепипеде ABCDA1B1C1D1 с ребрами CD = 24, AD= 6 и DD1=4 проведена плоскость через центр симметрии грани A1B1C1D1 ,вершину А и точку Р, лежащую на ребре DC. Какую наименьшую площадь может иметь сечение параллелепипеда этой плоскостью? На какие части делит точка P ребро DC в этом случае?

Решение. Проведем плоскость и построим сечение (рис.). АО Î АA1C1С - линия, принадлежащая данной плоскости. Продолжим АО до пересечения сCC1в точкеS. ТогдаSP - линия пересечения граниDD1C1Cи данной плоскости, а сечениеANMP - параллелограмм. Sсеч = SAMNP = SK*AP/2 , потому чтоSK/2— высота параллелограммаANMP. Это видно из следующего рассуждения.

В ΔASC ОC1 - средняя линия (значит SC1 = 4), в ΔPSC также средняя линия МC1, а плоскость A1B1C1D1 делит пополам любую линию между S и плоскостью ABCD, а значит и SK.

Пусть PC = x; ΔCLP подобен ΔDAP,

LC/AD = x/(24—x), LC = 6x/(24—x);_____________ ____________

ИзΔCLP: KC= (6x*x/(24—x))/(√(36x2/(24—x)2)+x2) = 6x/(√(36+ (24—x)2);

________ ___________________ __________________

ИзΔSCK: SK = √SC2+ KC2 = √64+36x2/(36+(24—x)2) = 2√16+9x2/(36+(24—x)2) ;

Из ΔADP: AP = √36+(24x)2;_____ _________________ __________________

Sсеч = AP*SK/2 = 0,5*(√36+(24—x)2) 2√16+9x2/(36+(24—x)2) = √16(36+(24—x)2)+9x2;

Если S’(x) = 0, то 18x+16*2(24—x)(-1) = 0;

50x—32*24 = 0, x = 32*24/50 = 32*12/25 = 384/25 (это точка min);

Sсеч = 312;

DP = 24—16*24/25 = 216/25;

Ответ: 312 кв. ед.; DC: 384/25; 216/25.


Задача 6. Высота пирамиды TABC с основанием ABC проходит через середину ребра AC. Выберите на AC точку М так, чтобы площадь сечения пирамиды плоскостью, проходящей через точку M, середину ребра TC и вершину B, была наименьшей, если AB=BC=AC=TC=2.

Решение. HF=FC=1/2;

S∆BME = BM*EK*1/2;___ _

Из∆TCH => TH = √4—1=√3;

EF = TH/2=√3/2;

ПустьMC = x.

Из BMC по теореме косинусов MB2= x2+4—2*2*x*1/2;

MB = √x2—2x+4; _ _

S∆BMC = 0,5*MC*BC*sinC=(x/2)*2√3 /2 = x√3/2;

S∆BMC = 0,5*BM*PC, _ ________

PC = (2S∆BMC)/BM, PC = x√3/√x2—2x+4 ;

KMF подобен PMC(по двум углам):

KF/PC= MF/MC(рис 2),_____ _ _________

KF = x√3(x—1/2)/(xx2—2x+4) = √3(x—1/2)/(√x2—2x+4);

________ ______________________

Из KEF =>KE = √ KF2+EF2 = √3(x—1/2)2/(x2—2x+4)+3/4; _

SBME = 0,5√x2—2x+4 *√3(x—1/2)2/(x2—2x+4)+3/4 = 0,5√3(x—1/2)2+(x2—2x+4)*3/4;

Если S’(x) = 0, то

6(x—1/2)+(2x—2)*3/4 = 0;

15x—9 = 0;

x = 3/5; __

S(3/5) = √15/5 кв.ед.

Ответ: √15/5 кв.ед.

Задача 7. В сферу радиусом R вписана правильная треугольная пирамида, у которой боковое ребро образует с высотой пирамиды угол 60o. Какую наименьшую площадь может иметь треугольник MBK, если точка Mлежит на апофеме пирамиды, а BK—высота основания пирамиды, не пересекающая апофему?

Решение. TP = 2R, ÐATO = 60o.

ПустьAB = BC= CA = a(рис.)

Тогда AO = a√3/3,

AD = BK = a√3/2, _ _

TO = AO*ctg60o= a√3/3*1/√3 = a/3,