В свете сказанного второстепенное значение имеют недостатки, присущие аналитической геометрии Декарта и Ферма, пользовавшегося к тому же менее совершенной алгеброй Виета, например не разработанность вопроса об отрицательных координатах или отсутствие на большинстве чертежей второй оси, а также то обстоятельство, что оба они ограничились немногими примерами приложения нового метода.
Современники восприняли новую геометрию с энтузиазмом. Уже в латинских изданиях «Геометрии» Декарта мы находим отдельные, заслуживающие упоминания вещи.
[1]В первом издаиии этот весьма распространенный в XVII в. труд назывался «Основы арифметики в числах и видах» (Arithmeticaeinnumerisetspeciebusinstitutio).
[2] Еще в переводе арабского трактата Ибн ал-Хайсама о параболических зеркалах, сделанном в XII в., употребляется оборот lineasecunduinordinem, т. е. «линия по порядку». Н. Орем в середине XIV в. писал о перпендикулярно приложенных отрезках — perpendiculariterapplicatae.
[3]П. Ферма. Введение в изучение плоских и пространственных мест. В книге: Р. Декарт. Геометрия, стр. 137—138.
[4] См. Р. Декарт. Геометрия, стр. 146.
[5] Термин «аналитическая геометрия» в применении к любым геометрическим приложениям алгебры употреблялся в XVIII в. не раз. В более специальном смысле. совпадающем с общепринятыми в XIX в., его начал применять С. Ф. Лакруа, а первую книгу, озаглавленную «Начала аналитической геометрии» (Elements de geometric analytique. Paris, 1801), опубликовал профессор Политехнической школы Ж. Г. Гарнье (1766-1840).
[6]Р. Декарт. Геометрия, стр. 30.
[7] Там же, стр. 30-31
[8]Р. Декарт. Геометрия, стр. 30.
[9] Там же, стр. 33
[10]Р. Декарт. Геометрия, стр. 34
[11] «Прямая сторона» — термин, восходящий к древности, есть отрезок, равный нашему удвоенному параметру. Слово «параметр» (измеряю) предложил в этом смысле употреблять друг Декарта Кл. Мидорж во «Введения в катоптрику и диоптрику или труде о конических сечениях» (Prodromuscatoptricorumetdioptri-corumsiveconicoruniopus, Parisiis, 1631).
[12]В подвижной системе координат ЕВ = у,LB = х' уравнение параболы CKN есть у2 = а (a — х'), при этом х' = ху/(2а — х).
[13]Р. Декарт. Геометрия, стр. 73
[14]Г. Цейтен. История математики в древности и в средние века. Перевод П. С. Юшкевича. М.— Л., 1938, стр. 138.
[15]И. Ньютон. Математические начала натуральной философии. Перевод А. Н. Крылова. Собрание трудов А. Н. Крылова, т. VII. М.— Л., стр. 122.
[16] Помимо трезубца Декарт рассмотрел (в переписке 1638 г.) так называемый декартов лист x3 + y3 = 3axy и еще некоторые высшие кривые.