Доказательству этой теоремы мы должны предпослать несколько лемм:
Лемма 1. Пусть W, — алгебраическое расширение поля Р. Достаточным условием для того, чтобы W было алгебраически замкнутым, является разложение на линейные множители любого многочлена из P[x] в кольце W[x].
Доказательство. Пусть f(x) — произвольный многочлен из W[x]. Если он не разлагается на линейные множители, то можно присоединить некоторый его корень a и прийти к собственному надполю W'. Элемент aявляется алгебраическим над W, а W является алгебраическим расширением поля P; следовательно, элемент aалгебраичен и над Р. Поэтому он является корнем некоторого многочлена g(x) из P[x].Этот многочлен разлагается в W[x]на линейные множители. Следовательно, a —корень некоторого линейного множителя в W[x],т. е. принадлежит полю W, что противоречит предположению.
Лемма 2. Если поле Pвполне упорядочено, то кольцо многочленов P[x] может быть вполне упорядочено и притом так, что в этом упорядочении поле Pбудет отрезком.
Доказательство. Определим отношение порядка между многочленами f(x) из P[x]следующим образом: пусть f(x)<g(x),когда выполнено одно из условий:
1) степень f(x) меньше степени g(x);
2) степень f(x) равна степени g(x) и равна n, т. е.
f(x) = а0хn + ...+ аn,g (x) = b0хn + ... + bn
и при некотором индексе k:
аi = biдляi<k,
ak<bk, в смысле упорядочения поля Р.
При этом для многочлена 0 делается исключение: ему присваивается степень 0. Очевидно, что таким способом получается некоторое упорядочение, в смысле которого P[x] вполне упорядочено. Показывается это так: в каждом непустом множестве многочленов есть непустое подмножество многочленов наименьшей степени; пусть таковая равна п. В этом подмножестве есть непустое подмножество многочленов, коэффициент а0 которых является первым в смысле имеющегося порядка среди свободных членов рассматриваемых многочленов; в указанном подмножестве есть в свою очередь подмножество многочленов с первым а1и т. д. Подмножество с первым аn которое в конце концов получится, может состоять лишь из одного-единственного многочлена (так как а0, ..., аnопределяются однозначно благодаряпоследовательно выполняемому условию минимальности в выборе); этот многочлен является первым элементом в заданном множестве.
Лемма 3. Если поле P вполне упорядочено и заданы многочлен f(x)степени n и n символов a1 ..., an то поле P (a1 ,..., an), в котором f(x) полностью разлагается на линейные множители
n
Õ(x-ai), строится единственным образом и является вполне
1
упорядоченным. Поле Pв смысле этого порядка является отрезком.
Доказательство. Мы будем присоединять корни a1 ..., anпоследовательно, вследствие чего из P = Р0 последовательно будут возникать поля Р1, ..., Рn. Предположим, что Рi-1 = P(a1 ..., ai-1) — уже построенное поле и что P — отрезок в Рi-1; тогда Рi будет строиться так.
Прежде всего в силу леммы 2 кольцо многочленов Рi-1[x] вполне упорядочивается. Многочлен f разлагается в этом кольце на неразложимые множители, среди которых на первом месте будут стоять x - a1,..., x - ai-1; среди остальных множителейпусть fi(x)будет первым в смысле имеющегося порядка. Вместе с символом aiобозначающим корень многочлена fi(x), мы определяем поле Рi= Pi-1 как совокупность всех сумм
h-1
åclali
0
где h —степень многочлена fi(x). Если fi(x) линеен, то, конечно, мы полагаем Рi= Pi-1; символ aiв этом случае не нужен. Построенное поле вполне упорядочивается с помощью следующего условия: каждому элементу поля
h-1
åclali
0
сопоставим многочлен
h-1
å clxli
0
и элементы поля упорядочим точно так же, как упорядочены соответствующие им многочлены.
Очевидно, тогда Рi-1 является отрезком в Рi, а потому и P — отрезок в Рi.
Тем самым поля Р1 ,..., Рn построены н вполне упорядочены. Поле Рn является искомым однозначно определенным полем P(a1 ,..., an).
Лемма 4. Если в упорядоченном множестве полей каждое предшествующее поле является подполем последующего, то объединение этих полей является полем.
Доказательство. Для любых двух элементов a, b объединения существуют два поля Sa, Sb, которые содержат a, и b и из которых одно предшествует другому. В объемлющем поле определены элементы a + b и a×b и именно так определяются эти элементы в каждом из полей, содержащих a и b, потому что из любых двух таких полей одно предшествует другому и является его подполем. Например, чтобы доказать закон ассоциативности
ab • g = a • bg,
найдем среди полей Sa, Sb, Sg то, которое содержит два других поля (наибольшее); в этом поле содержатся a, b и g и в нем закон ассоциативности выполнен. Тем же способом проверяются все остальные правила вычислений с элементами объединения.
Доказательство основной теоремы распадается на две части: построение поля W и доказательство единственности.
Построение поля W.. Лемма 1 свидетельствует о том, что для построения алгебраически замкнутого расширения W поля P достаточно построить такое алгебраическое расширение поля Р, чтобы каждый многочлен из Р[x]разлагался над этим расширением на линейные множители.
Будем считать, что поле Р, а потому и кольцо многочленов P[x], вполне упорядочены. Каждому многочлену f(x) сопоставим столько новых символов a1 ,..., an какова его степень.
Далее, каждому многочлену f(x) сопоставим два вполне упорядоченных поля Рf, Sf, которые определяются следующим рекуррентным способом.
1. Поле Рfявляется объединением поля Р и всех полей Sg для g<f.
2. Поле Рf вполне упорядочивается так, чтобы Р и все поля Sg при g<fбыли отрезками в Рf
3. Поле Sfполучается из Рf присоединением всех корней многочлена f с помощью символов a1 ,..., anв соответствии с леммой 3.
Нужно доказать, что таким способом действительно однозначно определяются вполне упорядоченные поля Рf , Sf, если только уже определены все предыдущие Рg, Sgперечисленным выше требованиям.
Если выполнено требование 3, то прежде всего Рf— отрезок в Sf. Из этого и из требования 2 следует, что поле Р и каждое поле Sg (g<f) являются отрезками в Sf. Предположим, что рассматриваемые требования выполнены для всех предыдущих индексов f, так что
Р — отрезок в Sh при h<f,
Sg— отрезок в Sh при g<h<f.
Отсюда следует, что поле Р и поля Sh (h<f) составляют множество того типа, о котором говорит лемма 4. Следовательно, объединение этих полей снова является полем, которое в соответствии с требованием 1 мы должны обозначить через Рf. Структура вполне упорядоченного поля на Рfоднозначно определяется требованием 2, потому что любые два элемента а, bиз Рf, принадлежат одному из полей Р или Sg и поэтому связаны отношением a<bили а>b, которое должно сохраняться в Рf. Эго отношение порядка является одним и тем же во всех полях Р или Sg, которые содержат как а, так и b, потому что все эти поля являются отрезками друг друга. Итак, отношение порядка определено. То, что оно определяет вполне упорядоченное множество, очевидно, так как каждое непустое множество x в Рfсодержит по меньшей мере один элемент из Р или из некоторого поля Sg, а потому и первый элемент из xÇ Р или из xÇSg. Этот элемент одновременно является и первым элементом в x.
Таким образом, поле Рfвполне упорядочивается с помощью требовании 1 и 2. Так как поле Sf, однозначно определяется требованием 3, поля РfиSfпостроены.
В силу условия 3 многочлен f(x) полностью разлагается на линейные множители в поле Sf. Далее, с помощью трансфинитной индукции показывается, что Sfявляется алгебраическим над Р. Действительно, предположим, что все поля Sg (g<f) уже алгебраические. Тогда и их объединение с полем Р, т.е. поле Рf, алгебраическое. Далее, поле Sf в силу условия 3 алгебраично над Рf, а потому алгебраичнои над Р.
Составим теперь объединение W всех полей Sf; согласно лемме 4 оно является полем. Это поле алгебраично над Р и над ним разлагаются все многочлены f (так как каждый многочлен f разлагается уже над Sf). Следовательно, поле W алгебраически замкнуто (лемма 1).