Введение 1
1. Теоретическая часть 1
1.1. Метод Гаусса 1
1.2. Метод Зейделя 4
1.3. Сравнение прямых и итерационных методов 6
2. Практическая часть 7
2.1 Программа решения системы линейных уравнений по методу Гаусса 7
2.2 Программа решения системы линейных уравнений по методу Зейделя 10
Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма.
К счастью, приложения очень часто приводят к матрицам, в которых число ненулевых элементов много меньше общего чила элементов матрицы. Такие матрицы принято называть разреженными. Одним из основных источников разреженных матриц являются математические модели технических устройств, состоящих из большого числа элементов, связи между которыми локальны. Простейшие примеры таких устройств – сложные строительные конструкции и большие электрические цепи.
Известны примеры решенных в последние годы задач, где число неизвестных достигало сотен тысяч. Естественно, это было бы невозможно, если бы соответствующие матрицы не являлись разреженными (матрица системы из 100 тыс. уравнений в формате двойной точности заняла бы около 75 Гбайт).
Одним из самых распространенных методов решения систем линейных уравнений является метод Гаусса. Этот метод (который также называют методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.
Вычисления с помощью метода Гаусса заключаются в последовательном исключении неизвестных из системы для преобразования ее к эквивалентной системе с верхней треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода.
1.1.1. Схема единственного деления. Рассмотрим сначала простейший вариант метода Гаусса, называемый схемой единственного деления.
Прямой ход состоит из n- 1 шагов исключения.
1-й шаг. Целью этого шага является исключение неизвестного x1 из уравнений с номерами i = 2, 3, …, n. Предположим, что коэффициент a11¹ 0. Будем называть его главным элементом 1-го шага.
Найдем величины
qi1 = ai1/a11 (i = 2, 3, …, n),
называемые множителями 1-го шага. Вычтем последовательно из второго, третьего, …, n-го уравнений системы первое уравнение, умноженное соответственно на q21, q31, …, qn1. Это позволит обратить в нуль коэффициенты при x1 во всех уравнениях, кроме первого. В результате получим эквивалентную систему
a11x1 + a12x2 + a13x3 + … + a1nxn= b1 ,
a22(1)x2 + a23(1)x3 + … + a2n(1)xn= b2(1) ,
a32(1)x2 + a33(1)x3 + … + a3n(1)xn= b3(1) ,
. . . . . . . . . . . . . . .
an2(1)x2 + an3(1)x3 + … + ann(1)xn= bn(1) .
в которой aij(1) и bij(1) вычисляются по формулам
aij(1) = aij − qi1a1j , bi(1) = bi − qi1b1.
2-й шаг. Целью этого шага является ислючение неизвестного x2 из уравнений с номерами i = 3, 4, …, n. Пусть a22(1) ≠ 0, где a22(1) – коэффициент, называемый главным (или ведущим) элементом 2-го шага. Вычислим множители 2-го шага
qi2 = ai2(1) / a22(1) (i = 3, 4, …, n)
и вычтем последовательно из третьего, четвертого, …, n-го уравнения системы второе уравнение, умноженное соответственно на q32, q42, …, qm2. В результате получим систему
a11x1 + a12x2 + a13x3 + … + a1nxn= b1 ,
a22(1)x2 + a23(1)x3 + … + a2n(1) = b2(1) ,
a33(2)x3 + … + a3n(2)xn = b3(2) ,
. . . . . . . . . . . . . . . . . . .
an3(2)x3 + … + ann(2)xn= bn(2) .
Здесь коэффициенты aij(2) и bij(2) вычисляются по формулам
aij(2) = aij(1) – qi2a2j(1) , bi(2) = bi(1) – qi2b2(1).
Аналогично проводятся остальные шаги. Опишем очередной k-й шаг.
k-й шаг. В предположении, что главный (ведущий) элемент k-го шага akk(k–1) отличен от нуля, вычислим множители k-го шага
qik = aik(k–1) / akk(k–1) (i = k + 1, …, n)
и вычтем последовательно из (k + 1)-го, …, n-го уравнений полученной на предыдущем шаге системы k-e уравнение, умноженное соответственно на qk+1,k, qk+2,k, …, qnk.
После (n - 1)-го шага исключения получим систему уравнений
a11x1 + a12x2 + a13x3 + … + a1nxn = b1 ,
a22(1)x2 + a23(1)x3 + … + a2n(1)xn = b2(1) ,
a33(2)x3 + … + a3n(2)xn = b3(2) ,
. . . . . . . . . . . . . . . . . . . .
ann(n–1)xn = bn(n–1) .
матрица A(n-1) которой является верхней треугольной. На этом вычисления прямого хода заканчиваются.
Обратный ход. Из последнего уравнения системы находим xn. Подставляя найденное значение xn в предпоследнее уравнение, получим xn–1. Осуществляя обратную подстановку, далее последовательно находим xn–1, xn–2, …, x1. Вычисления неизвестных здесь проводятся по формулам
xn = bn(n–1) / ann(n–1),
xk = (bn(k–1) – ak,k+1(k–1)xk+1 – … – akn(k–1)xn) / akk(k–1), (k = n – 1, …, 1).
Необходимость выбора главных элементов. Заметим, что вычисление множителей, а также обратная подстановка требуют деления на главные элементы akk(k–1). Поэтому если один из главных элементов оказывыется равным нулю, то схема единственного деления не может быть реализована. Здравый смысл подсказывает, что и в ситуации, когда все главные элементы отличны от нуля, но среди них есть близкие к нулю, возможен неконтролируемый рост погрешности.
1.1.2. Метод Гаусса с выбором главного элемента по столбцу (схема частичного выбора). Описание метода. На k-м шаге прямого хода коэффициенты уравнений системы с номерами i = k + 1, …, n преобразуются по формулам
aij(k) = aij(k–1)− qikakj , bi(k) = bi(k–1) − qikbk(k–1), i = k + 1, …, n.
Интуитивно ясно, что во избежание сильного роста коэффициентов системы и связанных с этим ошибок нельзя допускать появления больших множителей qik.
В методе Гаусса с выбором главного элементоа по столбцу гарантируется, что |qik| ≤ 1 для всех k = 1, 2, …, n – 1 и i = k + 1, …, n. Отличие этого варианта метода Гаусса от схемы единственного деления заключается в том, что на k-м шаге исключения в качестве главного элемента выбирают максимальный по модулю коэффициент aikk при неизвестной xk в уравнениях с номерами i = k + 1, …, n. Затем соответствующее выбранному коэффициенту уравнение с номером ik меняют местами с k-м уравнением системы для того, чтобы главный элемент занял место коэффициента akk(k-1). После этой перестановки исключение неизвестного xk производят, как в схеме единственного деления.
1.1.3. Метод Гаусса с выбором главного элемента по всей матрице (схема полного выбора). В этой схеме допускается нарушение естественного порядка исключения неизвестных.