Смекни!
smekni.com

СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ В ЛИНЕЙНОЙ ЗАДАЧЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ (стр. 5 из 7)

Приведем некоторые свойства числа обусловленности. Ясно, что M³m и поэтому cond(А)³1. Если Р – матрица перестановок[7], то компоненты вектора Px лишь порядком отличаются от компонент вектора х. Отсюда следует, что

и cond(P)=1 . В частности cond(I)=1. Если А умножается на скаляр с, то cond(cА)= cond(А). Если D – диагональная матрица, то

глава 2. Реализация сингулярного разложения

2.1. Алгоритмы

QR–алгоритм начинается с разложения матрицы по Грамму-Шмидту

, затем меняются местами сомножители:
Эта матрица подобна первоначальной,
Этот процесс продолжается, причем собственные значения не изменяются:

Эта формула описывает QR–алгоритм без сдвигов. Обычно время которое тратится на такой процесс пропорционально кубу размерности матрицы – n3. Необходимо процесс ускорить, для чего используется предварительное приведение матрицы А к форме Хессенберга[8] а также используется алгоритм со сдвигом. Форма Хессенберга представляет из себя верхнюю треугольную матрицу (верхняя форма Хессенберга) у которой сохранена одна диагональ ниже главной, а элементы ниже этой диагонали равны нулю. Если матрица симметрична, то легко видеть, что матрица Хессенберга превращается в трехдиагональную матрицу[9]. При использовании матрицы Хессенберга время процесса пропорционально n2, а при использовании трехдиагональной матрицы – n.

Можно использовать другие соотношения

где Qs – унитарная, а Ls – нижняя треугольная матрица. Такой алгоритм носит название QL–алгоритма.

В общем случае, когда все собственные значения матрицы различны, последовательность матриц As имеет пределом нижнюю треугольную матрицу

, диагональные элементы которой представляют собой собственные значения матрицы А, расположенные в порядке возрастания их модулей. Если матрица А имеет кратные собственные значения, то предельная матрица не является треугольной, а содержит диагональные блоки порядка p, соответствующие собственному числу
кратности p.

В общем случае, наддиагональный элемент

матрицы As на s-ом шаге асимптотически равен
, где kij – постоянная величина. Сходимость QL–алгоритма вообще говоря недостаточна. Сходимость можно улучшить, если на каждом шаге вместо матрицы As использовать матрицу As-ksI (QL–алгоритм со сдвигом). Последовательность вычислений в этом случае описывается следующими соотношениями:

которые определяют матрицу

. При этом асимптотическое поведение элемента
определено соотношением
, а не
, как прежде. Если сдвиг ks выбрать близко к величине
(наименьшее собственное значение), то в пределе внедиагональные элементы первой строки будут очень быстро стремиться к нулю. Когда ими можно пренебречь, элемент
с рабочей точностью равен
, остальные являются собственными значениями оставшейся матрицы n-1-го порядка. Тогда, если QL–алгоритм выполнен без ускорения сходимости, то все равно
, и поэтому автоматически можно выделить величину сдвига ks.

Если матрица А эрмитова, то очевидно, что и все матрицы Аs эрмитовы; если А действительная и симметричная, то все Qs ортогональны и все Аs действительны и симметричны.

2.2. Реализация разложения

Таким образом, разложение

производится в два этапа. Сначала матрица А посредством двух конечных последовательностей преобразований Хаусхолдера где
, приводится к верхней двухдиагональной форме следующего вида:

Далее реализуется итерационный процесс приведения двухдиагональной матрицы J0 к диагональной форме, так что имеет место следующая последовательность:

где
а Si и Ti – диагональные матрицы.

Матрицы Ti выбираются так, чтобы последовательность матриц

сходилась к двухдиагональной матрице. Матрицы же Si выбирают так, чтобы все Ji сохраняли двухдиагональную форму. Переход
осуществляется с помощью плоских вращений (10) – преобразований Гивенса. Отсюда,
где

а матрица

вычисляется аналогично с заменой
на
.

Пусть начальный угол

произволен, однако следующие значения угла необходимо выбирать так, чтобы матрица Ji+1 имела ту же форму, что и Ji. Таким образом
не аннулирует ни одного элемента матрицы, но добавляет элемент
;
аннулирует
но добавляет
;
аннулирует
но добавляет
и т.д., наконец,
аннулирует
и ничего не добавляет.

Этот процесс часто называют процессом преследования. Так как

, то
, и Mi+1 – трехдиагональная матрица, точно так же, как и Mi. Начальный угол
можно выбрать так, чтобы преобразование
было QR–преобразованием со сдвигом, равным s.

Обычный QR–алгоритм со сдвигом можно записать в следующем виде:

где

– верхняя треугольная матрица. Следовательно,
. Параметр сдвига s определяется собственным значением нижнего минора (размерности 2´2) матрицы Mi. При таком выборе параметра s метод обладает глобальной и почти всегда кубичной сходимостью.