Смекни!
smekni.com

Сетевые методы в планировании (стр. 3 из 4)

(а) (б)

Рис 3.3

фиктивная операция D. Поскольку на операцию D не затрачиваются ни время, ни ресурсы заданные отношения упорядочения выполняются.

Правило 3.При включении каждой операции в сетевую модель для обеспечения правильного упорядочения необходимо дать ответы на следующие вопросы:

а) Какие операции необходимо завершить непосредственно перед началом рассматриваемой операции?

б) Какие операции должны непосредственно следовать после завершения данной операции?

в) Какие операции могут выполняться одновременно с рассматриваемой?

Это правило не требует пояснений. Оно позволяет проверять (и перепроверять) отношения упорядочения в процессе построения сети.

Расчет сетевой модели

Применение методов СПУ в конечном счете должно обеспечить получение календарного плана, определяющего сроки начала и окончания каждой операции. Построение сети является лишь первым шагом на пути к достижению этой цели. Вследствие наличия взаимосвязей между различными операциями для определения сроков их начала и окончания необходимо проведение специальных расче­тов. Эти расчеты можно выполнять непосредственно на сети, пользуясь простыми правилами. В результате вычислений определяются критические и некритические операции программы. Операция счи­тается критической, если задержка ее начала приводит к увеличению срока окончания всей программы. Некритическая операция отли­чается тем, что промежуток времени между ее ранним началом и поздним окончанием (в рамках рассматриваемой программы) боль­ше ее фактической продолжительности.

Определение критического пути

Критический путь определяет непрерывную последовательность критических операций, связывающих исходное и завершающее со­бытия сети. Другими словами, критический путь задает все крити­ческие операции программы. Расчет критического пути включает два этапа. Первый этап называется прямым проходом. Вычисления начинаются с исходно­го события и продолжаются до тех пор, пока не будет достигнуто завершающее событие всей сети. Для каждого события вычисляет­ся одно число, представляющее ранний срок его наступления. На втором этапе, называе­мом обратным проходом, вычисления начинаются с завершающего события сети и продолжаются, пока не будет достигнуто исходное событие. Для каждого события вычисляется число, представляющее поздний срок его наступления. Обратный проход начинается с завершающего события сети. При этом целью является определение поздних сроков окончания всех операций, входящих в событие.

Теперь, используя результаты вычислений при прямом и обратном проходах, можно определить операции критического пути. Операция (i, j) принадлежит критическому пути, если она удовлетворяет следующим трем условиям:

E(i) - ранние сроки начала всех операций, выходящих из события i.

L(i) - поздние сроки окончания всех операций, входящих в событие i.

Dij- продолжительность операции, соединяющей i-тое и j- тое события.

1. E(i)=L(i)

2. E(j)=L(j)

3. E(j)-E(i)=L(j)-L(i)=Dij

По существу, эти условия означают, что между ранним сроком: начала (окончания) и поздним сроком начала (окончания) критической операции запас времени отсутствует.

Резервы времени некритических операций

Резерв критической операции равен нулю. Рассмотрим некоторую некритическую операцию / i , j /. Какое максимальное количество времени можно выделить для ее выполнения без задержки своевременного окончания всего проекта? Операция / i ,j / может начаться не ранее Е/i /и должна закончиться не позднее L ( j ). Таким образом,без задержки окончания проекта на выполнение операции / i, j / можно выделить не более L(j)-Е(i)единиц времени. Следовательно, при выполнении этой операции можно допустить максимальную задержку L( j )-Е( i )- d ij >= 0. Величина L(j )-E(i)-d ij называется полным резервом времени операции ( i , j ). Какое максимальное количество времени может быть выделено для выполнения операции (i ,j ) без введения дополнительных временных ограничений на последующие операции? Для соблюдения этого условия операция ( i , j ) должна быть закончена к моменту времени Е ( j ). Поскольку операция ( i , j ) может начаться не ранее E ( i ), на ее выполнение без введения дополнительных ограничений на последующие операции можно выделять не более E( j )-E(i ) единиц времени. Величина E ( j ) -E ( i )- d ij Называется свободным резервом времени операции ( i ,j ). Свободный резерв времени равен максимальной задержке выполнения операции ( i , j ), не влияющей на выполнение последующих операций. Какое максимальное количество времени может быть выделено для выполнения операции ( i,j ) без введения дополнительных временных ограничений на любую операцию проекта? Для выполнения этого условия операция ( i,j ) должна начаться в момент времени L(i ) и закончиться к моменту времени E(j ), cледовательно, на выполнение операции ( i,j ) в этом случае можно выделить не более Е ( J ) -L(i) единиц времени. Величина Е( j )- L (i )-d ij называется независимым резервом Времени операции (i ,j ). Независимый резерв времени равен максимальной задержке, которую можно допустить при выполнении операции ( i ,j ) без введения дополнительных временных ограничений на любую другую операцию проекта. Отрицательное значение независимого резерва означает, что любая задержка с выполнением операции приведет к дополнительным ограничениям на выполнение других операций.

Построение календарного графика и распределение ресурсов

Конечным результатом выполняемых на сетевой модели расчетов является календарный график (план). Этот график легко преобразуется в реальную шкалу времени, удобную для реализации процесса выполнения программы.

При построении календарного графика необходимо учитывать наличие ресурсов, так как одновременное (параллельное) выполнение некоторых операций из-за ограничений, связанных с рабочей силой, оборудованием и другими видами ресурсов, может оказаться невозможным. Именно в этом отношении представляют ценность резервы времени некритических операций. Сдвигая некритическую операцию в том или ином направлении, но в пределах ее полного резерва времени, можно добиться снижения максимальной потребности в ресурсах. Однако даже при отсутствии ограничений на ресурсы полные резервы времени обычно используются для вырабатывания потребностей в ресурсах на протяжении всего срока реализации программы. По существу, это означает, что программу удается выполнить более или менее постоянным составом рабочей силы по сравнению со случаем, когда потребности в рабочей силе (и др. ресурсах) резко меняются при переходе от одного интервала времени к другому.

Для построения календарного графика прежде всего определяются календарные сроки выполнения критических операций. Далее рассматриваются некритические операция и указываются их ранние сроки начала Е и поздние сроки окончания L. Критические операции изображают­ся сплошными линиями. Отрезки времени, в пределах которых могут выполняться некритические операции, наносятся пунктирными ли­ниями, показывающими, что календарные сроки этих операций мож­но выбрать в указанных пределах при условии сохранения отношений следования. Фиктивная операция не требует затрат времени и поэтому изображается на графике вертикальным отрезком. Числа, проставленные над некритическими операциями, соответствуют их продолжительностям.

Роль полных и свободных резервов времени при выборе кален­дарных сроков выполнения некритических операций объясняется двумя общими правилами.

1. Если полный резерв равен свободному, то календарные сроки некритической операции можно выбрать в любой точке между ее ранним началом и поздним окончанием.

2. Если свободный резерв меньше полного, то срок начала некритической операции можно сдвинуть по отношению к ее раннему сроку начала не более чем на величину свободного резерва, не влияя при этом на выбор календарных сроков непосредственно следующих операций.

3. Если свободный резерв времени операции больше полного, то это служит признаком того, что окончательные календарные сроки такой операции нельзя фиксировать, не проследив сначала, как это повлияет на сроки начала непосредственно следующих операций. Столь ценную информацию можно получить на основе расчетов сетевой модели.

Теперь, после изучения теории сетевого планирования, я перехожу к практической части курсового проекта.

Часть 2

Практическая реализация курсового проекта

Задание

Вариант № 24

Построить сетевую модель и календарный график по указанным в таблице данным.

Номера работ (опера-ций) Каким работам предше-ствует Продолжи-тельность работ Потребность в трудресурсах
1 2 9 2
2 3, 4, 5 8 1
3 6 8 9
4 8 9 5
5 7 13 1
6 7 12 4
7 10, 12 14 4
8 9, 10 12 3
9 10, 12 14 8
10 11 6 4
11 14 9 1
12 13, 17 11 3
13 15 16 6
14 15 5 1
15 16 7 5
16 18 9 1
17 18 13 2
18 9 3

Решение