Смекни!
smekni.com

Синтез оптимальных уравнений (стр. 1 из 9)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Механико-математический факультет

Кафедра теоретической механики и робототехники

Курсовая работа

Тема: Синтез оптимальных уравнений

Студента 3-го курса 13 группы

Павловского Сергея Александровича

Научный руководитель

Лютов Алексей Иванович

Минск 2001г.

ОГЛАВЛЕНИЕ

Г л а в а I. Введение................................................................................................ 2

§ 1. Задача об оптимальном быстродействии.................................................... 2

1.Понятие об оптимальном быстродействии.................................................. 2

2.Задача управления........................................................................................ 3

3.Уравнения движения объекта....................................................................... 5

4.Допустимые управления............................................................................... 6

§ 2. Об основных направлениях в теории оптимальных процессов.................. 7

5.Метод динамического программирования.................................................. 7

6.Принцип максимума..................................................................................... 9

§ 3. Пример. Задача синтеза............................................................................... 12

7.Пример применения принципа максимума............................................... 12

8.Проблема синтеза оптимальных управлений............................................ 14

Г л а в а II. Линейные оптимальные быстродействия..................................... 15

§ 4 Линейная задача оптимального управления............................................... 15

9.Формулировка задачи................................................................................ 15

10.Принцип максимума................................................................................. 16

11.Принцип максимума — необходимое и достаточное условие

оптимальности............................................................................................... 17

12.Основные теоремы о линейных оптимальных быстродействиях........... 18

§ 5. Решение задачи синтеза для линейных задач второго порядка................ 18

13.Упрощение уравнений линейного управляемого объекта...................... 18

Г л а в а III. Синтез оптимальных управлений для уравнения второго

порядка.......................................................................................................... 20

§ 6. Решение задачи синтеза в случае комплексных собственных значений...... 20

14.Задача синтеза для малых колебаний маятника...................................... 20

Список используемой литературы....................................................................... 23

Г л а в а I

ВВЕДЕНИЕ

Управляемые объекты прочно вошли в нашу повседневную жизнь и стали обиходными, обыденными явлениями. Мы видим их буквально на каждом шагу: автомобиль, самолёт, всевозможные электроприборы, снабжённые регуляторами (например, электрохолодильник), и т. п. Общим во всех этих случаях является то, что мы можем «управлять» объектом, можем в той или иной степени влиять на его поведение.

Обычно переход управляемого объекта из одного состояния в другое может быть осуществлён многими различными способами. Поэтому возникает вопрос о выборе такого пути, который с некоторой (но вполне определённой) точки зрения окажется наиболее выгодным. Это и есть (несколько расплывчато сформулированная) задача об оптимальном управлении.

§ 1. Задача об оптимальном быстродействии

1.

Понятие об управляемых объектах. Рассмотрим прямолинейное движение автомобиля. В каждый момент вре­мени состояние автомобиля можно характеризовать двумя числами: пройден­ным расстоянием s и скоростью движения v. Эти две величины меняются с те­чением времени, но не самопроизвольно, а сообразно воле водителя, который может по своему желанию управлять работой двигателя, увеличивая или уменьшая развиваемую этим двигателем силу F. Таким образом, мы имеем три связанных между собой параметра: s,v,F,показанных на схеме (рис. 1). Величины s,v,характеризующие состояние автомобиля, называют его фазовыми координатами,а величину Fуправляющим параметром.

Если мы будем рассматривать движение автомобиля по плоскости (а не по прямой), то фазовых координат будет четыре (две «географические» координаты и две компоненты скорости), а управляющих параметров – два (например, сила тяги двигателя и угол поворота руля). У летящего самолёта можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости) и несколько управляющих параметров (тяга двигателя, величины, характеризующие положение рулей высоты и направления, элеронов).

Разумеется, в проводимом ниже математическом исследовании мы будем иметь дело не с самими реальными объектами, а с некоторой математической моделью. Сказанное выше делает естественным следующее математическое описание управляемого объекта. Состояние объекта задаётся (в каждый момент времени) n числами x1, x2,…,xn, которые называются фазовыми координатами объекта. Движение объекта заключается с математической точки зрения в том, что его состояние с течением времени изменяется, т. е. x1,x2,…,xn являются переменными величинами (функциями времени). Движение объекта происходит не самопроизвольно. Им можно управлять; для этого объект снабжён «рулями», положение которых характеризуется (в каждый момент времени) r числами u1,u2,…,ur; эти числа называются управляющими параметрами. Рулями можно «манипулировать», т. е. по своему желанию менять (конечно, в допустимых пределах) управляющие параметры u1,u2,…,ur. Иначе говоря, мы можем по желанию выбрать функции u1(t),u2(t),…,ur(t), описывающие изменение управляющих параметров с течением времени. Мы будем предполагать (как это обычно и бывает), что, зная фазовое состояние объекта в начальный момент времени и выбрав управляющие функции u1(t),u2(t),…,ur(t) (для t>t0), мы можем точно и однозначно рассчитать поведение объекта для всех t>t0,т. е. можем найти функции x1(t),x2(t),…,xn(t), характеризующие изменение фазовых координат с течением времени. Таким образом, изменение фазовых координат x1,x2,…,xnуже не зависит непосредственно от нашего желания, но на движение объекта мы всё же можем в той или иной мере воздействовать, выбирая по своему желанию управляющие функции u1(t),u2(t),…,ur(t).

Управляемый объект, о котором только что шла речь, в теории автоматического управления принято изображать так, как это показано на рис. 2. Величины u1,u2,…,ur (управляющие параметры) часто называют также «входными переменными», а величины x1, x2,…,xn (фазовые координаты) – «выходными переменными». Говорят ещё, что «на вход» объекта поданы величины u1,u2,…,ur, а «на выходе» мы получаем величины x1, x2,…,xn. Разумеется, на рис. 2 показано лишь условное обозначение управляемого объекта и никак не отражено его «внутреннее устройство», знание которого необходимо, чтобы выяснить, каким образом, зная управляющие функции u1(t),u2(t),…,ur(t), можно вычислить изменение фазовых координат x1(t),x2(t),…,xn(t).

Величины u1,u2,…,ur удобно считать координатами некоторого вектораu=(u1,u2,…,ur), также называемого управляющим параметром (векторным). Точно так же величины x1, x2,…,xnудобно рассматривать как координаты некоторого вектора (или точки) x=(x1, x2,…,xn) в n – мерном пространстве с координатами x1, x2,…,xn. Эту точку называют фазовым состоянием объекта, а n – мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством рассматриваемого объекта. Если объект таков, что его фазовое состояние характеризуется только двумя фазовыми координатами x1, x2 (см. рис. 1), то мы будем говорить о фазовой плоскости. В этом случае фазовые состояния объекта изображаются особенно наглядно.

Итак, в векторных обозначениях рассматриваемый управляемый объект можно изобразить так, как показано на рис. 3. Входящая величина u=(u1,u2,…,ur) представляет собой управляющий параметр, а выходная величина x=(x1, x2,…,xn) представляет собой точку фазового пространства (или, иначе, фазовое состояние объекта).

Как сказано выше, чтобы полностью задать движение объекта, надо задать его фазовое состояние x0=(x01, x02,…, x0n) в начальный момент времени t0 и выбрать управляющие функции u1(t), u2(t),…, ur(t) (для t>t0), т. е. выбрать векторную функцию u(t)= u1(t),u2(t),…,ur(t)). Эту функцию u(t) мы будем называть управлением. Задание начального фазового состояния x0и управления u(t) однозначно определяет дальнейшее движение объекта. Это движение заключается в том, что фазовая точка x(t)=(x1(t),x2(t),…,xn(t)), изображающая состояние объекта, с течением времени перемещается, описывая в фазовом пространстве некоторую линию, называемую фазовой траекторией рассматриваемого движение объекта (случай n=2 изображён на рис. 4). Очевидно, что эта линия исходит из точки x0, поскольку x(t0)=x0.