Смекни!
smekni.com

Статистика (стр. 5 из 7)

Таблица №5а

п/п

Капитал,

млн. руб.

Число

Банков

Середина интервала, млн. руб.
Прибыль в среднем на один банк, млн. руб.
1 2 3 4 5
I 770 – 825 10 797,5 15,48
II 825 – 880 3 852,5 19,23
III 880 – 935 7 907,5 19,54
IV 935 – 990 4 962,5 24,27
V 990 – 1045 2 1017,5 22,30

Анализ таблицы №5а свидетельствует, что существует зависимость между капиталом и прибылью банков.



Поле корреляции, имеет форму вытянутого эллипса и ясно показывает, что имеется тенденция к росту из левого нижнего угла в правый верхний. Значит, имеется прямая корреляционная зависимость между капиталом и прибылью банков.

Эмпирическая линия регрессии также имеет некоторую тенденцию к росту, что также свидетельствует о наличии прямой корреляционной зависимости между капиталом и прибылью банков.

8. Определение тесноты и существенности связи

Эмпирическая линия регрессии (рисунок №1) – ломаная линия. Изломы этой линии свидетельствуют о влиянии на признак

прочих факторов, помимо признака
. Чтобы абстрагироваться от влияния прочих факторов, нужно прибегнуть к выравниванию полученной ломаной линии регрессии. Для этого сначала необходимо установить теоретическую форму связи, т.е. выбрать определенный вид функции, наилучшим образом отображающий характер изучаемой связи.

Выбор формы связи имеет решающее значение в корреляционно-регрессионном анализе, но этот выбор всегда связан с некоторой условностью, вызванный тем, что нужно находить форму функциональной зависимости, в то время как зависимость лишь в той или иной степени приближается к функциональной. Но если зависимость довольно высокая, т.е. довольно близко приближается к функциональной, тогда именно теоретическая линия регрессии и ее параметры приобретают практическое значение.

На основании качественного анализа исходных данных (таблица №1) и эмпирической линии регрессии (рисунок №1) можно предположить, что между капиталом и прибылью банков существует линейная зависимость. Для определения тесноты этой зависимости воспользуемся линейным коэффициентом корреляции:

где
значение факторного показателя
среднее значение факторного показателя
значение результативного показателя
среднее значение результативного показателя
число единиц в совокупности
среднее квадратическое отклонение по факторному показателю
среднее квадратическое отклонение по результативному показателю

Для вычисления линейного коэффициента корреляции воспользуемся расчетами, выполненными в таблице №4, тогда


Среднее значение и среднее квадратическое отклонение результативного показателя рассчитывается аналогично факторному:

где
среднее значение результативного показателя
среднее квадратическое отклонение по результативному показателю
значение результативного показателя
число единиц в совокупности

Коэффициент корреляции показывает не только тесноту, но и направление связи. Его значение изменяется от

до
. Если коэффициент имеет знак минус, значит, связь обратная, если имеет знак плюс, то связь прямая. Близость к единице в том и в другом случае характеризует близость к функциональной зависимости.

Таким образом, значение

свидетельствует о прямой и достаточно тесной связи между величиной капитала и прибылью банка.

Однако, чтобы это утверждать, необходимо дать оценку существенности линейного коэффициента корреляции, что можно выполнить на основании расчета t-критерия Стьюдента:

где
линейный коэффициент корреляции
число единиц в совокупности

Для числа степеней свободы

и уровня значимости 1% табличное значение
, т.е.
. Следовательно, с вероятностью
можно утверждать, что в генеральной совокупности существует достаточно тесная прямо пропорциональная линейная зависимость между величиной капитала и прибылью банка.

9. Уравнение парной регрессии

Для выравнивания эмпирической линии регрессии (рисунок №1) необходимо найти теоретическое уравнение связи. На основании вычислений, произведенных в п.8, выравнивание можно производить по прямой, т.е. теоретическое уравнение связи, имеющее линейный характер, в общем виде будет иметь вид:

Найти теоретическое уравнение связи – значит, в данном случае, определить параметры прямой. Это можно сделать способом наименьших квадратов, который дает систему нормальных уравнений для нахождения параметров прямой:

где
значение факторного показателя
значение результативного показателя
число единиц в совокупности
Тогда:
где
коэффициент корреляции
среднее квадратическое отклонение по факторному показателю
среднее квадратическое отклонение по результативному показателю
среднее значение результативного показателя
среднее значение факторного показателя