Смекни!
smekni.com

Статистика (стр. 4 из 5)

По данным представленной ниже таблицы, сумма пунктов роста равна –54.5, что


соответствует темпу прироста уровня пятого года по сравнению с первым годом. Иными словами, пятый год по сравнению с первым имеет снижение капитальных вложений на 54.5%.

2.

Для обобщающей характеристики динамики исследуемого явления определим средние показатели: средние уровни ряда и средние показатели изменения уровней ряда.


Средний уровенькапиталовложений за пять лет находим по формуле средней арифметической простой, млрд. руб.:

·


капиталовложений производственного назначения, млрд. руб.:

·


капиталовложений непроизводственного назначения, млрд. руб.:

Сводной обобщающей характеристикой интенсивности изменения уровней ряда динамики служит средний темп роста (снижения), показывающий во сколько раз в среднем за единицу времени изменяется уровень ряда динамики. Поскольку нам известны уровни динамического ряда, то расчёт среднего коэффициента роста произведём по более простому способу – «базисному»:

, где m – число уровней ряда динамики в изучаемом периоде, включая базисный.

Среднегодовой темп роста капиталовложений:

·


Производственного назначения:

·


Непроизводственного назначения:

Поскольку средний темп роста представляет собой средний коэффициент роста, выраженный в процентах, подсчитаем:



Средние темпы прироста (сокращения) рассчитываются на основе средних темпов роста, вычитанием из последних 100%. Соответственно при исчислении средних коэффициентов прироста из значений коэффициентов роста вычитается единица:

Если уровни ряда динамики снижаются, то средний темп роста будет меньше 100% (82%, 81%, 85%), а средний темп прироста отрицательной величиной (-18%, -19%, -15%). Отрицательный темп прироста представляет собой средний темп сокращения и характеризует среднюю относительную скорость снижения уровня.

Следовательно, в течение пяти лет уровень капиталовложений снижался в среднем на 18% в год, в том числе производственного назначения на 19%, непроизводственного назначения на 15%.

3.


Обобщающий показатель скорости изменения уровней во времени – средний абсолютный прирост (убыль), представляющий собой обобщённую характеристику индивидуальных абсолютных приростов ряда динамики. Средний абсолютный прирост определим через накопленный (базисный) абсолютный прирост:

,где m – число уровней ряда динамики в изучаемом периоде, включая базисный.


Средний абсолютный прирост капиталовложений, млрд. руб.:

Средний абсолютный прирост капиталовложений производственного назначения, млрд. руб.:


Средний абсолютный прирост капиталовложений непроизводственного назначения, млрд. руб.:

Таким образом, средний абсолютный прирост (убыль) составляет –18.6625 млрд. руб., другими словами среднегодовая абсолютная убыль капиталовложений составляет 18.66 млрд. руб., в том числе: производственного назначения 13.99 млрд. руб., непроизводственного назначения 4.68 млрд. руб.

Следовательно, в течение 6-го года объём капиталовложений составит 62.3-18.66=43.64 (млрд. руб.), в том числе:

Производственного назначения 41.4-13.99=27.41 млрд. руб.;

Непроизводственного назначения 20.9-4.68=16.22 млрд. руб.

Теперь осуществим прогноз с помощью среднего темпа роста. Средний темп роста капиталовложений составил 82%, следовательно, мы получаем снижение капиталовложений на 18% в год, 18% от 62.3 млрд. руб. (5-ый год) составляет 11.214 млрд. руб., 62.3-11.214=51.086 млрд. руб.

Следовательно, капиталовложения ближайшего года (6-го) составят 51.09 млрд. руб.

Аналогично рассчитаем капиталовложения производственногоназначения, которые составят 33.53 млрд. руб.; непроизводственногоназначения 17.77 млрд. руб.

4.


Осуществим прогноз на ближайший год, определив основную тенденцию развития общего объёма капиталовложений методом аналитического выравнивания. Основным содержанием метода аналитического выравнивания в рядах динамики является то, что общая тенденция развития рассчитывается как функция времени:

,где y – уровни динамического ряда, вычисленные по соответствующему аналитическому уравнению на момент времени t. Определение теоретических (расчётных) уравнений производится на основе так называемой адекватной математической модели, которая наилучшим образом отображает (аппроксимирует) основную тенденцию ряда динамики.


На основе анализа графического изображения ряда динамики целесообразно использовать следующую модель:

Решим систему нормальных уравнений, полученную путём алгебраического преобразования условия:

,где y – фактические (эмпирические) уровни ряда; t – время (порядковый номер периода).




Трендовая модель искомой функции будет иметь вид:

Осуществим прогноз на ближайший год с помощью этой модели(при t =6):



Подставляя в данное уравнение последовательно значения t, находим выровненные уровни:

5.


Изобразим динамику капитальных вложений на графике.

С помощью метода аналитического выравнивания и графического изображения динамики капитальных вложений мы проследили явную тенденцию снижения, что свидетельствует о сокращении общего объёма капиталовложений.

Задача 4.

Средние запасы материала на предприятии, составляющие в первом квартале 200 кв. м, сократились во втором на 30%. При этом, если раньше расход материала в среднем за сутки составлял 40 кв. м, то теперь он снизился до 32 кв. м.

Определите:

1. За каждый квартал:

· коэффициенты оборачиваемости производственных запасов;

· продолжительность одного оборота в днях;

· относительные уровни запасов (коэффициенты закрепления).

2. За второй квартал в сравнении с первым:

· ускорение (замедление) оборачиваемости запасов в днях;

· величину среднего запаса высвободившегося (осевшего, закрепившегося) в результате ускорения (замедления) его оборачиваемости.

Решение:

1.


Найдём средние запасы материала во втором квартале:

Поскольку по условию запасы материала сократились, произведём следующие вычисления:

Коэффициент оборачиваемости характеризует число оборотов запасов за период:

Мы нашли расход материала за сутки в 1 квартале. Подсчитаем коэффициент оборачиваемости производственных запасов в 1 квартале:

Аналогично во 2-ом квартале:

Найдём продолжительность одного оборота в днях:

Далее подсчитаем коэффициент закрепления для каждого квартала:

2.