[603, 884]
[604, 1064]
[605, 798]
[606, 1224]
[607, 608]
[608, 1260]
[609, 960]
[610, 1116]
[611, 672]
[612, 1638]
[613, 614]
[614, 924]
[615, 1008]
[616, 1440]
[617, 618]
[618, 1248]
[619, 620]
[620, 1344]
[621, 960]
[622, 936]
[623, 720]
[624, 1736]
[625, 781]
[626, 942]
[627, 960]
[628, 1106]
[629, 684]
[630, 1872]
[631, 632]
[632, 1200]
[633, 848]
[634, 954]
[635, 768]
[636, 1512]
[637, 798]
[638, 1080]
[639, 936]
[640, 1530]
[641, 642]
[642, 1296]
[643, 644]
[644, 1344]
[645, 1056]
[646, 1080]
[647, 648]
[648, 1815]
[649, 720]
[650, 1302]
[651, 1024]
[652, 1148]
[653, 654]
[654, 1320]
[655, 792]
[656, 1302]
[657, 962]
[658, 1152]
[659, 660]
[660, 2016]
[661, 662]
[662, 996]
[663, 1008]
[664, 1260]
[665, 960]
[666, 1482]
[667, 720]
[668, 1176]
[669, 896]
[670, 1224]
[671, 744]
[672, 2016]
[673, 674]
[674, 1014]
[675, 1240]
[676, 1281]
[677, 678]
[678, 1368]
[679, 784]
[680, 1620]
[681, 912]
[682, 1152]
[683, 684]
[684, 1820]
[685, 828]
[686, 1200]
[687, 920]
[688, 1364]
[689, 756]
[690, 1728]
[691, 692]
[692, 1218]
[693, 1248]
[694, 1044]
[695, 840]
[696, 1800]
[697, 756]
[698, 1050]
[699, 936]
[700, 1736]
[701, 702]
[702, 1680]
[703, 760]
[704, 1524]
[705, 1152]
[706, 1062]
[707, 816]
[708, 1680]
[709, 710]
[710, 1296]
[711, 1040]
[712, 1350]
[713, 768]
[714, 1728]
[715, 1008]
[716, 1260]
[717, 960]
[718, 1080]
[719, 720]
[720, 2418]
[721, 832]
[722, 1143]
[723, 968]
[724, 1274]
[725, 930]
[726, 1596]
[727, 728]
[728, 1680]
[729, 1093]
[730, 1332]
[731, 792]
[732, 1736]
[733, 734]
[734, 1104]
[735, 1368]
[736, 1512]
[737, 816]
[738, 1638]
[739, 740]
[740, 1596]
[741, 1120]
[742, 1296]
[743, 744]
[744, 1920]
[745, 900]
[746, 1122]
[747, 1092]
[748, 1512]
[749, 864]
[750, 1872]
[751, 752]
[752, 1488]
[753, 1008]
[754, 1260]
[755, 912]
[756, 2240]
[757, 758]
[758, 1140]
[759, 1152]
[760, 1800]
[761, 762]
[762, 1536]
[763, 880]
[764, 1344]
[765, 1404]
[766, 1152]
[767, 840]
[768, 2044]
[769, 770]
[770, 1728]
[771, 1032]
[772, 1358]
[773, 774]
[774, 1716]
[775, 992]
[776, 1470]
[777, 1216]
[778, 1170]
[779, 840]
[780, 2352]
[781, 864]
[782, 1296]
[783, 1200]
[784, 1767]
[785, 948]
[786, 1584]
[787, 788]
[788, 1386]
[789, 1056]
[790, 1440]
[791, 912]
[792, 2340]
[793, 868]
[794, 1194]
[795, 1296]
[796, 1400]
[797, 798]
[798, 1920]
[799, 864]
[800, 1953]
[801, 1170]
[802, 1206]
[803, 888]
[804, 1904]
[805, 1152]
[806, 1344]
[807, 1080]
[808, 1530]
[809, 810]
[810, 2178]
[811, 812]
[812, 1680]
[813, 1088]
[814, 1368]
[815, 984]
[816, 2232]
[817, 880]
[818, 1230]
[819, 1456]
[820, 1764]
[821, 822]
[822, 1656]
[823, 824]
[824, 1560]
[825, 1488]
[826, 1440]
[827, 828]
[828, 2184]
[829, 830]
[830, 1512]
[831, 1112]
[832, 1778]
[833, 1026]
[834, 1680]
[835, 1008]
[836, 1680]
[837, 1280]
[838, 1260]
[839, 840]
[840, 2880]
[841, 871]
[842, 1266]
[843, 1128]
[844, 1484]
[845, 1098]
[846, 1872]
[847, 1064]
[848, 1674]
[849, 1136]
[850, 1674]
[851, 912]
[852, 2016]
[853, 854]
[854, 1488]
[855, 1560]
[856, 1620]
[857, 858]
[858, 2016]
[859, 860]
[860, 1848]
[861, 1344]
[862, 1296]
[863, 864]
[864, 2520]
[865, 1044]
[866, 1302]
[867, 1228]
[868, 1792]
[869, 960]
[870, 2160]
[871, 952]
[872, 1650]
[873, 1274]
[874, 1440]
[875, 1248]
[876, 2072]
[877, 878]
[878, 1320]
[879, 1176]
[880, 2232]
[881, 882]
[882, 2223]
[883, 884]
[884, 1764]
[885, 1440]
[886, 1332]
[887, 888]
[888, 2280]
[889, 1024]
[890, 1620]
[891, 1452]
[892, 1568]
[893, 960]
[894, 1800]
[895, 1080]
[896, 2040]
[897, 1344]
[898, 1350]
[899, 960]
[900, 2821]
[901, 972]
[902, 1512]
[903, 1408]
[904, 1710]
[905, 1092]
[906, 1824]
[907, 908]
[908, 1596]
[909, 1326]
[910, 2016]
[911, 912]
[912, 2480]
[913, 1008]
[914, 1374]
[915, 1488]
[916, 1610]
[917, 1056]
[918, 2160]
[919, 920]
[920, 2160]
[921, 1232]
[922, 1386]
[923, 1008]
[924, 2688]
[925, 1178]
[926, 1392]
[927, 1352]
[928, 1890]
[929, 930]
[930, 2304]
[931, 1140]
[932, 1638]
[933, 1248]
[934, 1404]
[935, 1296]
[936, 2730]
[937, 938]
[938, 1632]
[939, 1256]
[940, 2016]
[941, 942]
[942, 1896]
[943, 1008]
[944, 1860]
[945, 1920]
[946, 1584]
[947, 948]
[948, 2240]
[949, 1036]
[950, 1860]
[951, 1272]
[952, 2160]
[953, 954]
[954, 2106]
[955, 1152]
[956, 1680]
[957, 1440]
[958, 1440]
[959, 1104]
[960, 3048]
[961, 993]
[962, 1596]
[963, 1404]
[964, 1694]
[965, 1164]
[966, 2304]
[967, 968]
[968, 1995]
[969, 1440]
[970, 1764]
[971, 972]
[972, 2548]
[973, 1120]
[974, 1464]
[975, 1736]
[976, 1922]
[977, 978]
[978, 1968]
[979, 1080]
[980, 2394]
[981, 1430]
[982, 1476]
[983, 984]
[984, 2520]
[985, 1188]
[986, 1620]
[987, 1536]
[988, 1960]
[989, 1056]
[990, 2808]
[991, 992]
[992, 2016]
[993, 1328]
[994, 1728]
[995, 1200]
[996, 2352]
[997, 998]
[998, 1500]
[999, 1520]
[1000, 2340]
Теперь посмотрим, все ли числа являются суммой делителей какого-либо числа и есть ли такие числа сумма делителей которых равна (в первых двух сотнях).
Ниже приведена таблица: [[4, 7]](на втором месте сумма делителей, а на первом число с данной суммой делителей) … [[1, 1]], [2] (т.е. нет такого числа с суммой делителей равной двум):
[1,1]
[2]
[2,3]
[3,4]
[5]
[5,6]
[4,7]
[7,8]
[9]
[10]
[11]
[6,12]
[11, 12]
[9,13]
[13,14]
[8,15]
[16]
[17]
[10,18]
[17,18]
[19]
[19.20]
[21]
[22]
[23]
[14,24]
[15,24]
[23,24]
[25]
[26]
[27]
[12, 28].
[29]
[29,30]
[16,31]
[25.31]
[21,32]
[31,32]
[33]
[34]
[35]
[22,36]
[37]
[37,38]
[18,39]
[27, 40]
[41]
[20,42]
[26,42]
[41,42].
[43]
[43,44].
[45]
[46]
[47]
[33,48].
[35,4 8]
[47,48]
[49]
[50]
[51]
[52]
[53]
[34,54]
[53, 54]
[55]
[28,56]
[39.56]
[49,57]
[58]
[59]
[24,60]
[38.60]
[59,60]
[61]
[61,62]
[32,63]
[64]
[65]
[66]
[67]
[67, 68]
[69]
[70]
[71]
[30,72]
[46,72]
[51,72]
[55,72]
[71,72]
[73]
[73,74]
[75]
[76]
[77]
[45,78]
[79]
[57,80]
[79,80]
[81]
[82]
[83]
[44,84]
[65,84]
[83,84]
[85]
[86]
[87]
[88]
[89]
[40, 90]
[58,90]
[89,90]
[36,91]
[92]
[50,93].
[94]
[95]
[42, 96]
[62,96]
[69,96]
[77,96]
[97]
[52,98]
[97,98]
[99]
[100]
[101]
[102]
[103]
[63,104]
[105]
[106]
[107]
[85,108]
[109]
[110]
[111]
[91, 112]
[113]
[74,114],
[115]
[116]
[117]
[118]
[119]
[54,120]
[56,120]
[87,120]
[95,120]
[81,121]
[122]
[123]
[48,124]
[75, 124]
[125]
[68,126]
[82.126]
[64,127]
[9 3,128]
[129]
[130]
[131]
[86,132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[76,140]
[141]
[142]
[143]
[66,144]
[70,144]
[94,144]
[145]
[146]
[147]
[178]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[99,156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[60,168]
[78,168]
[92,168]
[169]
[170]
[98,171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[88,180]
[181]
[182]
[183]
[184]
[185]
[80,186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]
[194]
[72,195]
[196]
[197]
[198]
[199]
[200]
Как мы заметили, есть такие числа, которые не являются суммой делителей ни одного числа и так же есть такие числа, которые являются суммой делителей ни одного, а нескольких чисел. Теперь посмотрим только те числа, которые являются суммой делителей ни одного, а нескольких чисел:
[6,12], [11,12]
[10,18], [17,18]
[14,24], [15,24], [23,24]