_x3 + 4x2 – 5
x3 – x2_5x2 – 5
5x2 – 5x _5x – 5 5x – 50
P(x)/(x – 1) = x3 + x2 + 5x + 5 , значит
P(x) = (x – 1)(x3 + x2 + 5x + 5).
Среди делителей свободного члена многочлена x3 + x2 + 5x + 5 x = -1 является его корнем , а это значит , что по следствию 2 из теоремы Безу x3 + x2 + 5x + 5 делится на (x + 1) без остатка :
_x3 + x2 +5x + 5 x + 1 x3 + x2x2 +5 _5x + 5 5x + 50
(x3 + x2 +5x + 5)/(x + 1) = x2 +5 ,
значит
x3 + x2 +5x + 5 = (x +1)(x2 +5).
Отсюда
P(x) = (x – 1)(x +1)(x2 +5) .
По следствию 7 (x2 + 5) на множители не раскладывается , т.к. действительных корней не имеет , поэтому P(x) далее на множители не раскладывается .
Ответ : x4 + 4x2 – 5 = (x – 1)(x +1)(x2 +5) .
Пример 7.
Разложить на множители многочлен P(x) = x4 + 324 .
P(x) корней не имеет , т.к. x4 не может быть равен -324 , значит , по следствию 7 P(x) на множители не раскладывается .
Ответ : многочлен на множители не раскладывается .
Пример 8.
Какую кратность имеет корень 2 для многочлена
P(x) = x5 - 5x4 + 7x3 – 2x2 + 4x – 8 .
Определение: Если многочлен P(x) делится без остатка на (x – a)k , но не делится на (x – a)k+1 , то говорят , что число a является корнем кратности k для P(x).
_x5 - 5x4 + 7x3 – 2x2 + 4x – 8 x – 2 x5 - 2x4x4 – 3x3 + x2 + 4_-3x4 + 7x3 – 2x2 + 4x – 8
-3x4 + 6x3
_x3 – 2x2 + 4x – 8 x3 – 2x2_4x – 8
4x – 8
0 _x4 – 3x3 + x2 + 4 x – 2 x4 – 2x3 x3 – x2 – x – 2_-x3 + x2 + 4
-x3 +2x2
_-x2 + 4 -x2 + 2x_-2x + 4
-2x + 4
0 _ x3 – x2 – x – 2 x – 2 x3 – 2x2 x2 + x + 1 _x2 – x – 2 x2 – 2x_x – 2
x – 2
0x2 + x + 1 на x – 2 не делится , т.к. R=22 + 2 + 1=
=7.
Значит , P(x)/(x – 2)3 = x2 + x + 1 , т.е. корень 2 имеет кратность 3 для многочлена P(x) .
Ответ: корень 2 имеет кратность 3 для многочлена P(x) .
Пример 9.
Составить кубический многочлен , имеющий корень 4 кратности 2 и корень -2 .
По следствию 3 , если многочлен P(x) имеет корень 4 кратности 2 и корень –2 , то он делится без остатка на (x – 4)2(x + 2) , значит
P(x)/(x – 4)2(x + 2) = Q(x) ,
т.е. P(x) = (x – 4)2(x + 2)Q(x) =
= (x2 – 8x +16)(x + 2)Q(x) =
= (x3 – 8x2 + 16x +2x2 – 16x + 32)Q(x) =
= (x3 – 6x2 + 32)Q(x).
(x3 – 6x2 + 32) - кубический многочлен , но по условию P(x) – также кубический многочлен, следовательно , Q(x) – некоторое действительное число .
Пусть Q(x) = 1 , тогда P(x) = x3 – 6x2 + 32 .
Ответ: x3 – 6x2 + 32 .
Пример 10.
Определите a и b так , чтобы -2 было корнем многочлена P(x) = x5 + ax2 + bx + 1, имеющим по крайней мере кратность два .
Если -2 – корень многочлена P(x) кратности два , то по следствию 3 P(x) делится на (x + 2)2 без остатка (R = 0)
(x + 2)2 = x2 + 4x + 4
_x5 + ax2 + bx + 1 x2 + 4x + 4 x5 + 4x4 + 4x3 x3 – 4x2 + 12x – (a + 32) _-4x4–4x3–ax2+bx+1 -4x4 – 16x3 – 16x2_12x3 + (16 – a)x2 + bx + 1
12x3 +48x2 + 48x
_-(a + 32)x2 + (b – 48)x + 1 -(a + 32)x2 – 4(a + 32)x – 4(a + 32)(4a +b – 48 + 128)x + 4a + 129
R = (4a +b – 48 + 128)x + 4a + 129 =
= (4a +b + 80)x + 4a + 129
НоR = 0, значит
(4a +b + 80)x + 4a + 129 = 0 прилюбыхx .
Это возможно при условии , что
4a +b + 80 = 0 ,
4a + 129 = 0
Решим систему двух уравнений :
4a +b + 80 = 0 a = -32,254a + 129 = 0 b = 49
Ответ: a = -32,25 , b = 49 .
Из рассмотренных примеров видно , что теорема Безу находит применение при решении задач , связанных с делимостью многочленов (нахождение остатка при делении многочленов , определение кратности многочленов и т.д. ) , с разложением многочленов на множители , с определением кратности корней и многих других .
Теорема Безу находит применение при рассмотрении одной из важнейших задач математики – решении уравнений .
Биографический словарь деятелей в области математики.
2. Математическая энциклопедия.
3. Яремчук Ф.П., Рудченко П.А.
Алгебра и элементарные функции.
4. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварц- бурд С.И.
Алгебра и математический анализ.
5. Курош А.Г.
Курс высшей алгебры.