Смекни!
smekni.com

Теория вероятностей (стр. 3 из 7)

Случайная величина Х наз.распределённой по геометрическому закону с параметром р (рÎ[0;1]), если она принимает значения 1,2,3… с вероятностями Р{Х=х}= р(1-р)х-1 (х = 1,2,3…).

Случайную величину Х можно интерпритировать как число испытаний Бернулли, которые придётся произвести до первого успеха, если успех в единичном испытании может произойти с вероятностью р.

Математическое ожидание случайной величины, имеющей геометрическое распределение: МХ=1/p.

Дисперсия: DX=1-p/p2

Вопрос 16

Если число испытаний велико, а вероятность Pповяления события в каждом испытнаии очень мала, то используют приближенную формулу

Pn(k)=l^k*e^(-l/k)

Где k– число появлений события в nнезависимых испытаниях, l = np(среднее число появлений события в nнезависимых испытаниях), и говорят, что случайная величина распределена по закону Пуассона.

Вопрос 17

С.В. Х называется непрерывной, если существует неотрицательная функция рх(х) такая, что при любых х функцию распределения Fx(x) можно представить в виде: Fx(x)=интеграл от –бесконечности до х px(y)dy. Рассматривают только такие С.В., для которых рх(х) непрерывна всюду, кроме, может быть, конечного числа точек. Плотностью распределения вероятностей непрерывной С.В. называют первую производную от функции распределения: f(x)=F’(x). Вероятность того, что Н.С.В. Х примет значение, принадлежащее интервалу (а,b), определяется равенством P(a<X<b)=интервал от а до bf(x)dx. Зная плотность распределения можно найти функцию распределения F(x)=интеграл от –бесконечности до х f(x)dx. Плотность распределения обладает следующими свойствами: 1) П.Р. неотрицательна, т.е. f(x)>=0. 2) Несобственный интеграл от плотности распределения в пределах от –бесконечности до бесконечности равен единице: интеграл от –бесконечности до бесконечности f(x)dx=1.

Вопрос 18

Мат. ожидание Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: М(Х)=интеграл от –бесконечности до бесконечности хf(x)dx, где f(x) - плотность распределения С.В. Х. Предполагается, что интеграл сходится абсолютно. В частности, если все возможные значения принадлежат интервалу (а,b), то М(Х)=интеграл от а до bxf(x)dx. Все свойства мат. ожидания, указаны выше, для Д.С.В. Они сохраняются и для Н.С.В.

Дисперсия Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: D(X)=интеграл от –бесконечности до бесконечности [x-M(X)]*2f(x)dx, или равносильным равенством: D(X)=интеграл от –бесконечности до бесконечности x*2f(x)dx – [M(X)]*2. В частности, если все возможные значения х принадлежат интервалу (a,b),то D(X)=интервал от а до b [xM(X)]*2f(x)dx,или D(X)=интеграл от a до bx*2f(x)dx – [M(X)]*2. Все свойства дисперсии Д.С.В. сохраняются и для Н.С.В.

Вопрос 19

Моменты распределения. При решении многих практических задач нет особой необходимости в полной вероятностной характеристике каких-либо случайных величин, которую дает функция плотности распределения вероятностей. Очень часто приходится также иметь дело с анализом случайных величин, плотности вероятностей которых не отображаются аналитическими функциями либо вообще неизвестны. В этих случаях достаточно общее представление о характере и основных особенностях распределения случайных величин можно получить на основании усредненных числовых характеристик распределений.

Числовыми характеристиками случайных величин, которые однозначно определяются функциями распределения их вероятностей, являются моменты.

Начальные моменты n-го порядка случайной величины X (или просто моменты) представляют собой усредненные значения n-й степени случайной переменной: mnº М{Xn

=
xn p(x) dx, где M{Xn} и
- символические обозначения математического ожидания и усреднения величины Хn, которые вычисляются по пространству состояний случайной величины Х.

Соответственно, для случайных дискретных величин: mnº М{Xn

=
xinpi.

Центральные моменты n-го порядка, это моменты относительно центров распределения (средних значений) случайных величин:

mnº M{(X-

)n
=
(x-m1)n p(x) dx

mnºM{(X-

)n
=
(xi-m1)npi, где
- начальный момент 1-го порядка (среднее значение величины Х), X0 = X-
- центрированные значения величины Х.

Связь между центральными и начальными моментами достаточно проста:

m1=0, m2=m2-m12, m3=m3-3m2m1+2m13, m4=m4-4m1m3+6m12m2-3m14, и т.д.

Соответственно, для случайных величин с нулевыми средними значениями начальные моменты равны центральным моментам.

По результатам реализации случайных величин может производиться только оценка моментов, т.к. количество измерений всегда конечно и не может с абсолютной точностью отражать все пространство состояний случайных величин. Результаты измерений - выборка из всех возможных значений случайной величины (генеральной совокупности). Оценка моментов, т.е. определение средних значений n-й степени по выборке из N зарегистрированных значений, производится по формулам:

= (1/N)
xin»
,
= (1/N)
(xi-
)n»

Вопрос 20

Равномерным называют распределение вероятностей Н.С.В. Х, если на интервале (а,b), которому принадлежат все возможные значения Х, плотность сохраняет постоянное значение, а именно f(x)=1/(b-a); вне этого интервала f(x)=0. Нетрудно убедиться, что интеграл от –бесконечности до бесконечности р(х)dx=1. Для С.В., имеющей равномерное распределение , вероятность того, что С.В. примет значения из заданного интервала (х,х+дельта) прин. [a,b], не зависит от положения этого интервала на числовой оси и пропорциональна длине этого интервала дельта: P{x<X<x+дельта}=интеграл от х до х+дельта 1/b-adt=дельта/b-a. Функция распределения Х имеет вид: F(x)=0, при х<=a, x-a/b-a,при a<x<=b,1при х>b.

Вопрос 21

Случайная величина Х с функцией распределения

F(x)= {0, x<0,

{1- eμxx³0

называется распределённой по показательному закону с параметром μ. Плотность распределения этой случайной величины получается путём дифференцирования:

f(x)={0, x<0,

{μeμxx³0.

Интервал времени между двумя последовательными появлениями некоторого редкого события описывается случайной величиной, распределённой по показательному закону.

MX=1/μDX=1/μ2

Вопрос 22

Потоком событий называют последовательность событий, которые наступают в случайные моменты времени.

Простейшим (пуассоновским) называют поток событий, который обладает следующими тремя свойствами: стационарностью, «отсутст­вием последействия» и ординарностью.

Свойство стационарности состоит в том, что вероятность появле­ния kсобытий в любом промежутке времени зависит только от числа kи от длительности tпромежутка времени и не зависит от начала его отсчета. Другими словами, вероятность появления kсобытий за промежуток времени длительностью tесть функция, за-висящая только от t.