Смекни!
smekni.com

Уравнение Кортевега - де Фриса, солитон, уединенная волна (стр. 2 из 5)

Волновое уравнение (1.1) имеет очень важное свойство, суть которого заключена в следующем. Оказалось, что если взять два любых решения этого уравнения, то их сумма снова будет решением этого же уравнения. Это свойство отражает принцип су­перпозиции решений уравнения (1.1) и соответствует линейности явления, которое оно описывает. Для нелинейных моделей это свойство не выполняется, что приводит к существенным отличиям протекания процессов в соответствующих моделях. В частности, из выражения для скорости уединенной волны, ко­торую наблюдал Рассел, следует, что ее значение за­висит от амплитуды, а для волны, описываемой уравнением (1.1), такой зависимости нет.

Непосредственной подстановкой в уравнение (1.1) можно убедиться, что зависимость

u(x,t)=a cos(kx-wt) (1.3)

в которой а, kи w — постоянные, при wk является решением уравнения (1). В этом решении а — амплитуда, k — волновое число, а w — частота. При­веденное решение представляет собой монохрома­тическую волну, переносимую в среде с фазовой скоростью

cp=

(1.4)

На практике монохроматическую волну создать трудно, и обычно имеют дело с цугом (пакетом) волн, в котором каждая волна распространяется со своей скоростью, а скорость распространения паке­та характеризуется групповой скоростью

Cg=

, (1.5)

определяемой через производную от частоты w по волновому числу k.

Определить, с какой (линейной или нелиней­ной) моделью имеет дело исследователь, не всегда легко, но когда математическая модель сформули­рована, то решение этого вопроса упрощается и вы­полнение принципа суперпозиции решений можно проверить.

Возвращаясь к волнам на воде, заметим, что их можно анализировать используя хорошо известные уравнения гидродинамики, о которых известно, что они нелинейны. Поэтому и волны на воде в общем случае являются нелинейными. Только в предель­ном случае малых амплитуд эти волны могут счи­таться линейными.

Отметим, что и распространение звука не во всех случаях описывается линейным уравнением. Еще Рассел при обосновании своих наблюдений по уе­диненной волне отметил, что звук от выстрела пуш­ки распространяется в воздухе быстрее, чем коман­да произвести этот выстрел. Это объясняется тем, что распространение мощного звука описывается уже не волновым уравнением, а уравнениями газо­вой динамики.

2. Уравнение Кортевега - де Фриса

Окончательная ясность в проблеме, которая воз­никла после опытов Рассела по уединенной волне, наступила после работы датских ученых Д .Д. Кортевега и Г. де Фриса, которые попытались разобраться в существе наблюдений Рассела. Обобщив метод Рэлея, эти ученые в 1895 году вывели уравнение для описания длинных волн на воде. Кортевег и де Фрис, используя уравнения гидродинамики, рас­смотрели отклонение и(х,t) от положения равнове­сия поверхности воды при отсутствии вихрей и при постоянстве плотности воды. Сделанные ими на­чальные приближения были естественны. Они так­же предположили, что при распространении волны выполняются два условия для безразмерных пара­метров

e=

<<1, d=
(2.1)

Здесь а — амплитуда волны, hглубина бассейна, в котором рассматриваются волны, l — длина волны (рис. 1).

Суть приближений состояла в том, что амплиту­да рассматриваемых волн была много меньше, чем

Рис. 1. Уединенная волна, распространяющаяся по каналу, и ее параметры

глубина бассейна, но в то же время длина волны бы­ла много больше, чем глубина бассейна. Таким образом, Кортевег и де Фрис рассматривали длин­ные волны.

Уравнение, которое было ими получено, имеет вид

ut + 6uux + uxxx = 0. (2.2)

Здесь u(x,t) - отклонение от положения равновесия поверхности воды (форма волны) - зависит от ко­ординаты xи времени t. Индексы у характеристики u означают соответствующие производные по t и по x. Это уравнение, как и (1), является уравнением в ча­стных производных. Изучаемая характеристика у него (в данном случае u) зависит от пространствен­ной координаты xи времени t.

Решить уравнение такого типа - значит найти зависимость uот x и t, после подстановки которой в уравнение мы придем к тождеству.

Уравнение (2.2) имеет волновое решение, извест­ное с конца прошлого века. Оно выражается через специальную эллиптическую функцию, изученную Карлом Якоби, которая носит теперь его имя.

При некоторых условиях эллиптическая функ­ция Якоби переходит в гиперболический секанс и решение имеет вид

u(x,t)=2k2ch-2{k(x-4k2t)+j0}, (2.3)

где j0— произвольная постоянная.

Решение (8) уравнения (7) является предельным случаем бесконечно большого периода волны. Именно этот предельный случай является уединен­ной волной, соответствующей наблюдению Рассела в 1834 году.

Решение (8) уравнения Кортевега— де Фриса яв­ляется бегущей волной. Это означает, что оно зави­сит от координаты xи времени tчерез переменную x=x-c0t.Эта переменная характеризует положение точки координат, движущейся со скоростью волны с0, то есть она обозначает положение наблюдателя, который постоянно находится на гребне волны. Та­ким образом, уравнение Кортевега— де Фриса в от­личие от решения Д'Аламбера (1.2) волнового реше­ния (1.1) имеет волну, распространяющуюся лишь в одном направлении. Однако оно учитывает прояв­ление более сложных эффектов вследствие дополнительных слагаемых uux и uxxx.

В действительности это уравнение является так­же приближенным, поскольку при его выводе ис­пользованы малые параметры (2.1) e иd. Если прене­бречь влиянием этих параметров, устремляя их к нулю, мы получим одну из частей решения Д'Алам­бера.

Конечно, при выводе уравнения для длинных волн на воде влияние параметров е и 6 может быть учтено более точно, но тогда получится уравнение, содержащее гораздо больше слагаемых, чем уравне­ние (2.2), и с производными более высокого порядка. Из сказанного следует, что решение уравнения Кортевега-де Фриса для описания волн справедливо только на определенном расстоянии от места обра­зования волны и на определенном промежутке вре­мени. На очень больших расстояниях нелинейные волны уже не будут описываться уравнением Кортевега-де Фриса, и для описания процесса потребует­ся более точная модель. Уравнение Кортевега-де Фриса в этом смысле следует рассматривать как не­которое приближение (математическую модель), со­ответствующее с определенной степенью точности реальному процессу распространения волн на воде.

Используя специальный подход, можно убе­диться, что принцип суперпозиции решений для уравнения Кортевега-де Фриса не выполняется, и поэтому это уравнение является нелинейным и описывает нелинейные волны.

2.1. Солитоны Кортевега - де Фриса

В настоящее время кажется странным, что от­крытие Рассела и его последующее подтверждение в работе Кортевега и де Фриса не получили замет­ного резонанса в науке. Эти работы оказались за­бытыми почти на 70 лет. Один из авторов уравне­ния, Д.Д. Кортевег, прожил долгую жизнь и был известным ученым. Но когда в 1945 году научная общественность отмечала его 100-летний юбилей, то в списке лучших публикаций работа, выполнен­ная им с де Фрисом, даже не значилась. Составите­ли списка сочли эту работу Кортевега не заслужива­ющей внимания. Только спустя еще четверть века именно эта работа стала считаться главным науч­ным достижением Кортевега.

Однако если поразмыслить, то такое невнима­ние к уединенной волне Рассела становится понят­ным. Дело в том, что в силу своей специфичности это открытие долгое время считалось довольно част­ным фактом. В самом деле, в то время физический мир казался линейным и принцип суперпозиции считался одним из фундаментальных принципов большинства физических теорий. Поэтому никто из исследователей не придал открытию экзотичес­кой волны на воде серьезного значения.

Возвращение к открытию уединенной волны на воде произошло в какой-то степени случайно и вна­чале, казалось, не имело к нему никакого отноше­ния. Виновником этого события стал величайший физик нашего столетия Энрико Ферми. В 1952 году Ферми попросил двух молодых физиков С. Улама и Д. Паста решить одну из нелинейных задач на ЭВМ. Они должны были рассчитать колебания 64 гру­зиков, связанных друг с другом пружинками, ко­торые при отклонении от положения равновесия на Dl приобретали возвращающуюся силу, равную kDl+a(Dl)2. Здесь kи a - постоянные коэффициен­ты. При этом нелинейная добавка предполагалась малой по сравнению с основной силой kDl. Созда­вая начальное колебание, исследователи хотели по­смотреть, как эта начальная мода будет распреде­ляться по всем другим модам. После проведения расчетов этой задачи на ЭВМ ожидаемого результа­та они не получили, но обнаружили, что перекачи­вание энергии в две или три моды на начальном этапе расчета действительно происходит, но затем наблюдается возврат к начальному состоянию. Об этом парадоксе, связанном с возвратом начального колебания, стало известно нескольким математи­кам и физикам. В частности, об этой задаче узнали американские физики М. Крускал и Н. Забуски, ко­торые решили продолжить вычислительные экспе­рименты с моделью, предложенной Ферми.