Смекни!
smekni.com

Уравнения с параметрами (стр. 2 из 5)

П р и м ер . Решим уравнение

(4)

Р е ш е н и е. Значение а=0 является контрольным. При a=0 уравнение (4) теряет смысл и, следовательно, не имеет корней. Если а≠0, то после преобразований уравнение (4) примет вид:

х2+2 (1 — а) х +а2 — 2а — 3=0. (5)

Найдем дискриминант уравнения (5)

= (1 — a)2 — (a2 — 2а — 3) = 4.

Находим корни уравнения (5):

х1 =а + 1, х2 = а3.

При переходе от уравнения (4) к уравнению (5) расширилась

область определения уравнения (4), что могло привести к появлению посторонних корней. Поэтому необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых х1+1=0, х1+2=0, х2+1=0, х2+2=0.

Если х1+1=0, т. е. (а+1)+1=0, то а= — 2. Таким образом, при а= — 2 х1 — посторонний корень уравнения (4).

Если х1+2=0, т. е. (а+1)+2=0, то а= — 3. Таким образом, при а= — 3 x1 — посторонний корень уравнения (4).

Если х2+1 =0, т. е. (а — 3)+1=0, то а=2. Таким образом, при а=2 х2 — посторонний корень уравнения (4)'.

Если х2+2=0, т. е. (а — 3)+2=0, то а=1. Таким образом, при а= 1 х2 — посторонний корень уравнения (4).

Для облегчения выписывания ответа сведем полученные результаты на рисунке .

только х2 только х2 корней нет только х1 только х1

х1,2х1,2 х1,2х1,2х1,2х1,2


-3 -2 0 1 2 а

В соответствии с этой иллюстрацией при а= — 3 получаем х= — 3 — 3= — 6;

при a= — 2 х= — 2 — 3= — 5; при a=1 х= 1+1=2; при a=2 х=2+1=3.

Итак, можно записать

От в ет: 1) если a= — 3, то х= — 6; 2) если a= — 2, то х= — 5; 3) если a=0, то корней нет; 4) если a= l, то х=2; 5) если а=2, то х=3;

6) если а≠ -3 ;

а≠ -2 ;

а≠ 0 ; то х1 = а + 1,

а≠ 1 ; х2 = а – 3.

а≠ 2,

Иррациональные уравнения с параметрами.

Существует несколько способов решения иррациональных уравнений с параметрами. Познакомимся с ними, разобрав следующий пример.

П р и м ер . Решить уравнение х -

= 1. (6)

Решение:

Возведем в квадрат обе части иррационального уравнения с последующей проверкой полученных решений.

Перепишем исходное уравнение в виде:

= х – 1 (7)

При возведении в квадрат обеих частей исходного уравнения и проведения тождественных преобразований получим:

2 х2 – 2х + (1 - а) = 0, D = 2а – 1.

Особое значение : а = 0,5. Отсюда :

1) при а > 0,5 х1,2 = 0,5 ( 1 ±

);

2) при а = 0,5 х = 0,5 ;

3) при а <0,5 уравнение не имеет решений.

Проверка:

1) при подстановке х = 0,5 в уравнение (7), равносильное исходному, получим неверное равенство. Значит, х = 0,5 не является решением (7) и уравнения (6).

2) при подстановке х1 = 0,5 ( 1 ±

) в (7) получим:

-0,5 ( 1 +

) =
– ( 0,5 ( 1 -
))2

Так как левая часть равенства отрицательна, то х1 не удовлетворяет исходному уравнению.

3) Подставим х2 в уравнение (7):

=

Проведя равносильные преобразования, получим:

Если

, то можно возвести полученное равенство в квадрат:

Имеем истинное равенство при условии, что

Это условие выполняется, если а ≥1. Так как равенство истинно при а ≥1, а х2 может быть корнем уравнения (6) при а > 0,5, следовательно, х2 – корень уравнения при а ≥1.

Тригонометрические уравнения.

Большинство тригонометрических уравнений с параметрами сводится к решению простейших тригонометрических уравнений трех типов. При решении таких уравнений необходимо учитывать ограниченность тригонометрических функций у = sinx и y = cosx. Рассмотрим примеры.

Пример . Решить уравнение: cos

=2а.

Решение: Так как Е(соst)=[-1; 1], то имеем два случая.

1. При |a| > 0,5 уравнение не имеет решений.

2. При |a| ≤0,5 имеем:

а)

=arccos2a+2πn. Так как уравнение имеет решение, если arccos2а+2πn≥0, то n может принимать значения n=0, 1, 2, 3,.... Решением уравнения является х = 1+(2πn+аrссоs2а)2

б)

=-аrссоs2а+πn. Так как уравнение имеет решение при условии, что -аrссоs2а+2πn>0, то n=1, 2, 3,..., и решение уравнения. х=1+(2πn-arccos2a)2 .

Ответ: если |a| > 0,5, решений нет;

если |a| ≤0,5 , х = 1+(2πn+аrссоs2а)2при n = 0, 1, 2,... и х=1+(2πn-arccos2a)2 при n

N.

Пример . Решить уравнение: tgax2 =

Решение:.

ах2 =

+πn, n
Z

Если коэффициент при неизвестном зависит от параметра, то появляется особое значение параметра. В данном случае:

1. Если а=0, то уравнение не имеет решений.

2. Если а

0, то х2 =
, n
Z

Уравнение имеет решение, если

≥0. Выясним, при каких значениях n

и а выполняется это условие:

≥0

откуда n

и а > 0 или n
и а < 0.

Итак, уравнение имеет решение х = ±

, если

1) а > 0 и n = 1,2,3,… или

2) а < 0 и n

Z.

Ответ: при а = 0 решений нет;

при а > 0 и n = 1,2,3,… или а < 0 и n

Z х = ±

.

Пример. Решите уравнение: а sinbx = 1

Решение: Особое значение параметра а : а = 0.

1. При а = 0 решений нет.

2. При а

0 sinbx =

. Имеем 2 случая: