Всем предлагается сделать полный оборот вокруг оси. В результате, точки линии АМВ опишут окружности, которые назовем параллелями, они лежат в плоскостях, перпендикулярных оси вращения, а следовательно эти плоскости параллельны между собой.
[Вывод: Поверхностью вращения назовем поверхность, образованую линией, которая лежит в одной плоскости с осью и при вращении вокруг оси (Z) делает полный оборот].
Упражнение 9. Назовите какой из пунктов в упражнении является цилиндрической поверхностью? (Ответ в)).
Учащиеся делают вывод:
При вращении прямоугольника вокруг прямой, содержащей одну из его сторон, получается, что во всех положениях АВ параллельна ОО1, а поэтому при полном обороте описывает цилиндрическую поверхность (часть), а отрезки ОВ и О1А опишут круги.
- ломанная опишет поверхность цилиндра О1АВО
- основания круги;
- образующая АВ перпендикулярна основаниям.
Полученное тело назовем цилиндром вращения.
Упражнение 10. (Самостоятельно). Предлагается учащимся вращать прямоугольник вокруг оси, проходящей через ось симметрии прямоугольника. Необходимо ли делать полный оборот в данном случае? (Ответ: нет, достаточно пол оборота).
Изображение цилиндра
Обычно цилиндр изображают от руки:
1) основание изображают в виде эллипсов, лежащих в параллельных плоскостях;
2) двумя образующими соединяют концы больших диаметров эллипсов (оснований);
3) видимые линии рисуют сплошными, невидимые – контурными.
Соглашение 4. Под цилиндром будем понимать (подразумевать) цилиндр вращения.
Упражнение 11. Ученикам предлагается провести всевозможные сечения цилиндра, плоскостью. Каждый ученики предлагает вариант, а затем все сведения систематизируются в следующую таблицу: (это упражнение выполняется на модели цилиндра сделанного полностью из пластилина, используя нож для резки пластилина).
| | | | | |
| | |
Соглашение 5. Цилиндр осевое сечение (проходящее через ось вращения), которого – квадрат называется равносторонним цилиндром.
I этап: Введение понятия конус. Математическое видение конуса.
Цель этапа: сформировать ценностное представление у учащихся о конусе и его элементах. Развить пространственное воображение и логическое мышление через «видение конуса».
Дидактические средства:
- набор пространственных тел;
- пластилин;
- деревянные палочки;
- цветные карандаши;
модели изготовленные по рис. 3.
Упражнение 1. Назовите уже изученные вами пространственные тела? (призма, пирамида, цилиндр). Назовите те которые еще не изучались? (конус, сфера (шар)).
Изучение данной темы по своей структурной схеме аналогично изучению темы «Цилиндр».
Упражнение 2. Из пластилина изготовьте линию (KL). Пересеките ее деревянными палочками, таким образом, чтобы все эти палочки проходили через одну точку (S), не принадлежащую (KL). В результате получим поверхность, которую назовем конической поверхностью (рис. 1).
Соглашение 1. Точка S – вершина, линия MN – направляющая, а прямая а – образующая.
Упражнение 3. Соедините концы линии (KL) (получится замкнутая линия (KL) и коническая поверхность, которую назовем замкнутой) (рис. 2).
|
Упражнение 4. Из пластилина делается плоскость (лепешка) и коническую поверхность соединяют с этой плоскостью. Получилась модель конуса.
[конусом назовем тело, ограниченное замкнутой конической поверхностью и пересекающей ее плоскостью].
Соглашение 2. Плоскость, пересекающая коническую поверхность назовем основанием.
Упражнение 5. Учащимся предлагается из точки S опустить перпендикуляр. Это можно сделать при помощи деревянной палочки, протянув ее в модели конуса через вершину точку S.
(а) перпендикуляр опущен в центр основания, то есть конус прямой;
б) перпендикуляр пересекает основание или плоскость основания, но не в центре, то есть наклонный конус).
Соглашение 3. Данный перпендикуляр назовем высотой конуса (кратчайшее расстояние от точки до плоскости).
Упражнение 6. Учащиеся приходят на урок с моделями по рис. 3. Необходимо выполнить полный оборот вокруг оси.
| |
[поверхностью вращения. Конусом вращения назовем тело полученное при вращении прямоугольного треугольника на полный оборот вокруг одного из катетов, в тогда другой катет опишет круг основание конуса, а образующая (гипотенуза) часть конической поверхности, или равнобедренного треугольника вокруг высоты опушенной из вершины) Достаточно пол оборота].