Смекни!
smekni.com

Формула Шлетца (стр. 1 из 3)

КОМИТЕТ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ.

КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ.

§1. Пространство R(p1,p2).

А1- аффинная прямая. Отнесем прямую А1к подвижному реперу r ={a,`e}, где аи`eсоответственно точка и вектор.

Деривационные формулы репера r имеют вид:

d a= q`e , d`e= W`e (1),

причем формы Пфаффа q и Wподчиняются уравнениям структуры 1-мерного аффинного пространства :

D q = qÙW , DW=WÙW=0.

Пусть e* - относительная длина вектора e* =`e + d`e + 1/2d2`e + 1/6d3`e +... по отношению к вектору `е. Тогда `e*=e*`e. Из (1) получаем :e* =1+W+... Таким образом, форма Пфаффа W является дифференциалом относительной длины вектора `e*, близкого к `e , по отношению к `e.

Пусть R(p1,p2) – пространство всех пар (p1,p2)точек p1,p2 прямой А1. Поместим начало а репера rв середину Qотрезка р1р2, а конец вектора `е – в точку р1; при этом р2совместится с концом вектора -`е.

Условия стационарности точек р1 и р2 в таком репере имеют соответственно вид: W+q=0, -W+q=0.

Таким образом , в репере r структурными формами пространства R(р12) являются формы Пфаффа : W+q , -W+q.

Очевидно, что dim R(p1,p2)=2. Заметим ,что в репере rформа 2W является дифференциалом относительной длины отрезка р12*, близкого к р1р2,по отношению к р1р2.

§ 2. Отображение f.

А2 – аффинная плоскость , отнесенная к подвижному реперу R={p,`ej}. Деривационные формулы репера Rи уравнения структуры плоскости А2 имеют соответственно вид :dp=Wjej ; d`ej=Wj k;

DWj=Wk^Wkj ; DWj=Wjy^Wyk .

Рассмотрим локальное дифференцируемое отображение fплоскости А2 в пространстве R(p1,p2):f:A2®R(p1,p2).

Будем считать , что в каждой точке области определения отображения f выполняется : rang f=2 (1)

Поместим начало Р репера R в точку f-1(p1,p2). Тогда дифференциальные уравнения отображения f запишутся в виде :

Q+W=ljWj; Q-W=mjWj (2)

Из (1) вытекает , что существует локальное дифференцируемое отображение f-1: R(p1,p2)®A2обратное к f.В указанных реперах дифференциальные уравнения отображения f-1имеют вид :

Wj=lj(Q+W)+mj(Q-W) (3)

Из (2) и (3) получаем :

lklj+mkmj=djk

ljlj=1

mjmj=1 (*)

ljmj=0

mjlj=0

Указанную пару {r;R} реперов пространств А1 и А2 будем называть репером нулевого порядка отображения f.

§3.Фундаментальные геометрические объекты отображения f.

Осуществим продолжение системы (2) дифференциального уравнений отображения f.

D(λjWj-W-Q)=0,

получаем :

jkWjk+1\4(λjμkkμj)WkjkWk

D(μjWj+W-Q)=0

получаем :

jkWjk+1\4(λjμkkμj)WkjkWk

Итак, продолженная система дифференциальных уравнений отображения f имеет вид :

Q+W=λjWj

Q-W=μjWj

jkWjk+1\4(λjμkkμj)WkjkWk

jkWjk+1\4(λjμkkμj)WkjkWj

Из этих уравнений вытекает, что система величин Г1=jj} является геометрическим объектом.Он называется фундаментальным геометрическим объектом первого порядка отображения f. Осуществим второе продолжение системы (2) :

k^WjkkdWjk+1\4(λjμkkμj)^Wk+1\4(λjμkkμj)dWk+dλjk^WkjkdWk=0.

получим:

(dλjtktWjkjkWtk+1\4(λkμjtkλjk)Wk+1\16λtμkjj)Wk)^Wt=0

k^WjkkdWjk+1\4d(λjμkkμj)^Wk+1\4(λjμkkμj)dWk+dμjk^WkjkdWk=0

получим:

(dμjtktWjkjtWtk+1\4(λkμjtkλjt)Wk+1\16λtμkjj)Wk)^Wt=0

обозначим:

λj=dλjtWjt

μj=dμjtWjt

λjk=dλjktkWktjtWkt

μjk=dμtkWjtjtWkt

Тогда дважды продолженная система дифференциальных уравнений отображения fпримет вид:

Q+W=λjWj

Q-W=μjWj

jkWjk+1\4(λjμkkμj)WkjkWk

jkWjk+1\4(λjμkkμj)WkjkWk (4)

λjk=(1\4(μαλjkαμjk)+1\16λkμαjj)+λjkα)Wα

μjk=(1\4(μαλjkαμjk)+1\16λkμαjj)+μjkα)Wα

Из уравнений (4) вытекает, что система величин Г2=jjjkjk}образует геометрический объект. Он называется фундаментальным геометрическим объектом второго порядка отображения f. Дальнейшее продолжение системы (2) приведет к фундаментальному геометрическому объекту ГР порядка р :

ГР=jjj1j2j1j2,...,λj1j2...jpj1j2...jp}.

§ 4. Векторы и ковекторы первого порядка.

Из системы дифференциальных уравнений (5) вытекает, что система величин j},{μj}образует подобъекты геометрического объекта Г1. Будем называть их основными ковекторами 1-го порядка. Основные ковекторы определяют для каждой точки P две инвариантные прямые:

λjXj=1 ; μjXj=1 (6)

не инцидентные точке Р. Из условия rang f=2и уравнения (2)вытекает, что прямые (6) не параллельны. Условия (*)показывают, что величины jj}являются компонентами матрицы ,обратной к матрице, составленной из координат основных ковекторов. Таким образом , величины jj}охватываются объектом Г1.

Из (*) получаем:

j=-λkWkj-1\4(λjjtWtktλkλtWtktWtkμj

j=-μkWkjktμkλjWtktμkμjWt+1\4λtjj)Wt

Таким образом , система величин и образуют геометрические объекты, охваченные объектом Г1. Будем называть их основными векторами 1-го порядка.

Предположение 1.Конец вектора v1jej(вектора v2jej) лежит на прямой (6). Доказательство вытекает из формул (*),(2). Прямые, параллельные прямым (6), инцидентные точке Р, определяются соответственно уравнениями:

λjXj=0 , μjXj= 0 (7).

Предположение 2. Основные векторы j}и j}параллельны прямым (6) соответственно. Доказательство вытекает из формул (*) и (7). Взаимное расположение рассмотренных векторов и прямых представлено на рисунке:

λjXj=1

V2

V1μjXj=1

Система величин ρjjjобразует ковектор: jkWjk+(μjkjk)Wk.