Смекни!
smekni.com

Шпоры по математическому анализу (стр. 4 из 8)

Теорема: Пусть функция z=f(x,y) имеет экстремум в точке (x0, у0). Если в этой точке существуют частные производные по х и по у, то они равны нулю.

Докаательство: Оно может быть сведено к применению известной теоремы для функции одной переменной. В наших условиях функция f(x,y0) имеет экстремум в точке x0, т.к. неравенство f0+∆х, y0+∆у)≤f0, y0), иначе f≤0

Или f≥0 должно, в частности, выполнятся и при ∆у=0.Поэтому, d/dx∙f(x,y0)=0 при х=х0, а это то же самое, что f'x0, y0)=0.Аналогично устанавливается, что f'у0, y0)=0. Экстремум возможен и тогда, когда одна или обе частные производные не существуют, что тоже является необходимым условием экстремума. Т.о., необходимые условия экстремума формулируются так: для каждой из частных производных выполняется одно из двух - лиюл она существует и равна нулю, либо она не существует.

31. Предел и непрерывность функции двух переменных.

Определение: Число А называется пределом по совакупности переменных функции f(x,y) при стремлении х к х0 и у к у0, если для любого ε>0 существует такое δ>0, что для всех точек (x,y), координаты которых удовлетворяют неравенствам │ х - х0 │< δ, │ y - y0 │< δ( за исключением, быть может, точки 0, y0)), выполняется неравенство │f(x,y)-A│ < ε. Применяется обозначение


Заметим, что точка 0, y0) может не принадлежать ООФ f(x,y).

Пусть функция f(x,y) определена в области D.

Определение. Если выполняются три условия:

1. 0, y0)Î D;

2. существует


3.

то функция называется непрерывной в точке 0, y0).

Определение: Если не выполняется хотя бы одно из этих условий, то функцию называют разрывной в точке 0, y0), а саму точку называют точкой разрыва.

Определение: Функция называется непрерывной в области, если она непрерывна в каждой точке этой плоскости.

Определение: Функция z = f(x,y) называется непрерывной в точке 0, y0), если при стремлении к нулю приращений ∆х, ∆у, независимых переменных стремится к нулю полное приращение ∆z функции f(x,y) (здесь предполагается выполнение условий 1 и 2.) (∆z - полное приращение).

42. Условный экстремум, метод множителей Лагранжа для функции двух переменных.

В этом методе не требуется выражать явно y через х , однако используется то обстоятельство, что в случае предполагаемой замены y на g(x) дело сводится к безусловному экстремуму функции одной переменной.

Итак, находим полную прозводную от z по х, считая y функцией х:


В точках экстремума dz: dx=0, следовательно (1),


Применим снова правило дифференцирования сложной функции к уравнению φ(x,y)=0. Будем предполагать при этом, что у заменен той самой функцией х, которая неявно задается уравнением. Такая замена превращает уравнение φ(x,y)=0 в тождество. Получим (2):


Умножим (2) на неопределенный множитель λ и сложим с (1):

Мы будем предполагать, что в точке экстремума j¸у¹0. Тогда существует число l, при котором f¸y + l(j¸у) = 0в этой точке. Из равенства (3) следует, что в этой точке f¸х + l(j¸х) = 0

Мы приходим к необходимым условиям экстремума (4):


В этой системе из трех уранений три неизвестные величины x, y и l. Из системы находятся одна или несколько точек (х,у). Что касается l, то этот множитель играет вспомогательную роль и дальше не требуется. Найденные точки (х,у) проверяют на наличие в них экстремума и его вид (максимум или минимум). В случае необходимости вычисляются значения f(x,y) на концах промежутка, ограничивающего изменение х при описании кривой АВ. Часто из существа задачи легко решается вопрос, с каким из значений - наибольшим или наименьшим - мы имеем дело. Проведенные рассуждения обосновывают метод Лагранжа, который состоит в следующем.

Составляется вспомогательная функция

F (x,y,l) = f(x,y) + lj(x,y) (5), называемая функцией Лагранжа. Для нее выписываются как для функции трех переменных необходимые условия абсолютного экстремума:


При этом получается в точности система (4).

Коэффициент l называют множителем Лагранжа.

Метод Лагранжа допускает обобщение на функции большего числа переменных. Так, в задаче на условный экстремум функции u=f(x,y,z) с ограничениями j1(x,y,z)=0 и j2(x,y,z)=0 функция Лагранжа имеет вид:

F(x,y,z, l1, l2) = f(x,y,z) + l1j1(x,y,z)+ l2j2(x,y,z).

Нулю приравниваются все произвоные по x,y,z, l1, l2.

41. Достаточные условия абсолютного экстермума функции двух переменных.

Обратимся к формуле Тейлора (вопр. 11). Нас интересует случай, когда необходимые условия экстремума выполняются, т.к. в противном случае вопрос решается однозначно - экстремума нет. Поэтому будем считать:


И, перенеся f(х0,y0)в левую часть, получим слева


Кроме того, обозначим


Приводим к формуле:

Положим u = AΔx2 + 2B∆xΔy +CΔy2При ρ→0 квадратичная форма u убывает со скоростью р2, т.е. быстрее. Поэтому в достаточно малой окрестности точки (х0,, y0) ,будет выполнятся неравенство 1/2│u│>│R│(если u не обратится в нуль). Это означает, что знак приращения совпадает со знаком u. Разумеется, в точках, где u=0, знаки f и R совпадают. Имеются 3 возможности:

1. Величина u сохраняет знак, обращаясь в нуль только при ∆x=∆y=0. Такая квадратичная форма называется знакоопределенной. В этом случае сохраняет знак и приращение f . При ∆f≤0в точке (х0,, y0) имеется максимум, а при ∆f≥0 - минимум.

2. В любой оокрестности точки (х0,, y0) величина u принимает как положительные, так и отрицательные значения. Такая квадратичная форма называется знакопеременной. В этом случае меняет знак и приращение f . Экстремума нет.

3. Величина u сохраняет знак, но обращается в нуль не только в начале координат. Такая квадратичная форма называется знакопостоянной. В этом случае никакого вывода сделать нельзя без исследования остаточного члена. Если в точках названной прямой остаточный член меняет знак, то экстремума нет, если сохраняет тот же знак, что и величина u - экстремум есть, если сохраняет знак противоположный u - экстремума нет.

Дело свелось теперь к установлению условий, при которых квадратичная форма u является знакоопределенной, знакопеременной или знакопостоянной. Если А = С = 0, В ¹ 0, то u = В∆х∆у, и квадратичная форма является знакопеременной. При совпадении знаков ∆х и ∆у она имеет знак В, при несовпалении - знак противоположный знаку В. В этом случае экстремума нет. Если к тому же В = 0, вопрос об экстремуме решается путем исследования остаточного члена R в каждом конкретном случае.


Пусть теперь хотя бы одна из величин А, С отлична от нуля. Положим для определенности, что А ≠ 0. Преобразуем форму u: вынесем за скобки А, прибавим и вычтем (В¸А ∆у)2. Первые три слагаемых представляют полный квадрат, два последних приводим к общему знаменателю:

1. Если В2 - АС <0, то форма знакоопределенная. Действительно,


Поэтому выражение в квадратных скобках неотрицательно и может обратится в нуль только тогда, когда оба слагаемых равны нулю. Второе обращается в 0 лишь при ∆у=0. В этом случае первое слагаемое будет равно 0 только при ∆х=0. Очевидно, что знак знакоопределенной формы u совпадает со знаком числа А.

2. Если В2 - АС >0, то форма знакопеременная. Действительно, выражение в квадратных скобках останется ∆x2и если ∆х≠0., то ∆x2 > 0; при ∆у≠0 можно взять ∆х = -В/А∆у и выражение в квадратных скобках будет отрицательным.

3. Если В2 - АС = 0, то форма знакопостоянная. В скобках останется выражение (∆х+В/А∆у)2, которое неотрицательно. Но в нуль оно обращается не только при ∆х=∆у=0, а и тогда, когда ∆х = -В/А∆у, при любом ∆у.

33. Частные производные.

Наряду с полным приращением функции вводится понятие частных приращений по х ∆хz и по у ∆уz. Они определяются формулами, где приращение дается только одной из переменных.