В) 2 или 3 плоскости ||
При этом когда 2 || , третья либо их пересекает, либо совпадает с одной из нихÞ система противоречива.
Г) плоскости попарно пересекаются. Линии пересечения || между собой (их 3)Þ система противоречива.
*** Если в однородной системе все миноры 2-го порядка =0, решение зависит от 2х параметров., или хотябы один отличен от нуля, то решение зависит от одного пораметра.
7. Сложение векторов, умножение вектора на скаляр. Проекция вектора на ось. Коллиниарность и комплиментарность векторов.
Вектором называется величина, которая характеризуется не только численным значением, но и направлением в пространстве. Модулем |ā| или длиной вектора а наз его числ. зн-ие. Если |ā|=0, вектор называют нулевым..
Проекция вектора на ось.
Пусть в пространстве даны вектор ĀВ и ось Ох. Опустим ^ на ось Ох и з точек А и В, т.е. спроектируем эти точки на ось Ох. Обозначим проекции через А' и В' Вектор A'B' называют компонентой вектора АВ по оси Ох. Проекцией вектора АВ на ось Ох называется длинна компоненты, взятая со знаком "+", если направление оси и компоненты совпадают, и со знаком "-" если направления противоположны.
Сложение и вычитание векторов
Сумма векторов ā и в определяется с помощью параллелограмма. Они выпускаются из одной точки и достраивается параллелограмм. Диагональ этого параллелограмма есть сумма векторов ā и в.
Сумма векторов так же определяется по правилу многоугольника - к концу первого вектораподставляют начало другого и соединяется начало первого и конец второго.Разность векторов
с=а-в в+с=а а с
в
Умножение вектора на скаляр.
λ-число (скаляр)
ā - вектор λā=с
Произведением λā называется вектор, длинна которого равна |ā|·|λ|, а направление такое же, как и у вектора ā если λ>0, и противоположное, если λ<0.
Векторы называются коллиниарными, если они лежат на совпадающих прямых.
Если векторы ā и в коллиниарны (ā¹0; в¹0), то они пропорциональны, т.е. существует такое положительное или отрицательное число l, что а=lв.
Три вектора называются компланарными, если их можно уложить на одну плоскость.
9. Скалярное произведение и его свойства.
Скалярным произведением векторов а и в называют произведение их длин и косинуса угла между ними.
(а,b)=|a|×|b|×cos(a,b)
Свойства:
1. Коммуникативность. (а,в)=(в,а)
2. Дистрибутивность. (а+в)×(с)=(а×с)+(в×с)
3. (lа,в)=(а,lв) - скалярный множитель можно выносить за знак скалярного произведения.
4. Скалярное произведение (а,в) равно 0 тогда и только тогда, когда они ^ или один из них=0
Док-во: cos 90 = 0
8. Длина и направляющие косинусы вектора, заданного координатами. Орты. Радиус-вектор точки.
Векторы единичной длины, направленные по осям координат называют ортами и обозначают i (по оси Ох) j (по оси Оу). В 3х-мерном пространстве берется еще k (по оси z) Проекции ах и ау вектора а на оси х и у называют координатами вектора а. Углы вектора а с осями координат - a и b, тогда ах =|a|×cosa - направляющие
ау =|a|×cosb косинусы
a,b - задают направление.
Величины cosa и cosb называются направляющимикосинусами вектора а. Зная координаты ах и ау , можно вычислить модуль и направляющие косинусы: cosa= ах¸|a|, cosb= ау¸|a|
Очевидно, что |a| = Öах2 +ау2
Вектор ОМ, выходящий из (0;0) и оканчивающийся в т. М(х,у) называют радиус-вектором т.М. Координаты х и у т.М. так же являются координатами вектора r=ОМ. Поэтому r=хi+уj. Принято так же писать r ={х,у}
Длина вектора в 3х-мерном пространстве измеряется по формуле
|a|= Ö ах2 +ау2 +аz2
Векторное произведение и его свойства.
Результатом векторного умножения вектров является вектор. Векторное произведение векторов а и в обозначается так: [а,в] или а´в.
Векторным произведением векторов а и в называется вектор с= [а,в], для кот.:
1. длина численно равна площади параллелограмма, построенного на этих векторах, т.е. |c|= |a|×|b|×sin(ab)
2. прямая, несущая вектор, ^ каждому из перемножаемых векторов,т.е. плоскости указанного параллелограмма
3. направление на этой прямой выбирается так, что бы при взгляде с конца вектора с поворот первого множителя а на наименьший угол до совмещения со вторым множителем в производился бы против часовой стрелки ( такая тройка векторов а,в,с, называется правой)
Если а и в коллиниарны, то с=0 и вопрос о направлении с отпалдает.
Свойства:
1. в´а = - а´в, т.е. векторное умножение некоммуникативно
2. [lа,в]=[а,lв]=l[а,в]
3. (а+в)´с=а´с+с´в, т.е. векторное умножение дистрибутивно
i j k ауаz ах аz ах ау а´в= ахауаz =i вувz - j вхвz +k вхвувхвувz
11. Смешанное произведение векторов. Его геометрический смысл.
Под смешанным произведением (векторно-скалярным) векторов а,в,с, понимают число авс=[а,в]×с
Выясним геометрический смысл смешанного произведения. Пусть S=[а,в]
|S|- площадь основания паралл-да
H -высота паралл-да
H= |c| ×|cosj|, где j - острый или тупой угол между векторами S и С.
авс=(s,c)=|s|×|c|×j= |s|×(±H)=±V - объем параллелепипеда.
Знак "+" получается, если тройка а,в,с правая и "-", если леваяÞАбсолютная величина смешанного произведения авс численно равна объему парал-да, построенного на векторах а,в,с.
Исходя из геом. Смысла, получаем необходимое и дополнительное условие компланарности векторов а,в,с, а именно авс=0
Координатная формула величины см. произведения векторов.
а={ахауаz}, в={вхвувz}, с={схсусz}:
ахауаzавс= вхвувz
схсусz
12.Формулы расстояния между двумя точками и длина отрезка в заданном отношении.
Расстояние между точками М1 и М2вычисляется как модуль |М1 М2| вектора М1 М2.
М1 М2=| М1 М2|=√(х2 -х1)2 + (у2 -у1)2
Нахождение координат точки, делящей отрезок М1 М2 в заданном отношении М1N¸N М2 = p(число р задано)
Известно ,что || прямые K1М1 ;
NL;K2М2рассекают стороны угла M2AK2 на пропорциональные отрезки:
p=М1N¸N М2=K1L¸LK2 или х-х1¸х2-х1=pÞх=х1+pх2¸1+p;y=у1 +pу2¸1+p
в частности координаты середины отрезка (p=1)
x= х1 +х2¸2
у= у1 +у2¸2
13. прямая линия на плоскости: общее уравнение, уравнение с угловым коэфициентом, уравнение в отрезках.
Общее уравнение прямой линии - Ах+Ву+С=0, где коэфициенты А, В, С - какие-либо числа, переменные х, у называют текущимикоординатами точки, лежащей на прямой. Некотоорые коэфициенты могут равняться 0, однако хотя бы одно из чисел А, В должно быть отлично от 0, т.е. А2+В2¹0, иначе в уравнении исчезнут обе текущие координаты
у=kх+в - уравнение прямой с угловым коэфициентом
k=tga, где a - меньший из неотрицательных углов, образуемых прямой с положительным направлением оси Ох (0<a<p;a¹p/2)
геом. смысл коэфицтентовуравнение в отрезках
заданы ненулевые отрезки а и в, отсекаемые прямой на осях координат. По условию точки (а;0) и (0;в) лежат на прямой. Воспользуемся уравнением
х - х1 у - у1х2-х1 у2- у1
где х1=а у1=0
х2=0 у2=в
14. Уравнение прямой, проходящей через одну заданную точку, через 2 точки.
у - у1=k(х - х1)
уравнение прямой: у=kх+в
Если мы преобразуем первоначальное уравнение у - у1=k(х - х1), то получим у=kх+( у1-kх1) Оно удовлетворяет условия уравнения прямой : у=kх+в, т.к.
1. его степень первая, а значит оно может быть прямой,
2. прямая проходит через точку (х1; у1), т.к. координаты этой точки удовлетворяют уравнению : 0=0
3. роль коэфициента в играет выражение у1-kх1
Прямая с уравнением у - у1=k(х - х1) проходит через 1 точку. Потребуем, что бы и вторая точка лежала на этой прямой, т.е. что бы выполнялось равенство у2 - у1=k(х2 - х1). Отсюда находим k= у2 - у1¸ х2 - х1и подставим в уравнение: