Марсианские русла слишком глубокие и слишком прямые, чтобы быть руслами рек в нашем привычном понимании. Действительно, долина Ниргал имеет глубину около километра. Хотя она и меандрирована, равнинные реки на Земле куда более извилисты, и это при почти втрое более сильной гравитации. Остальные долины по количественным характеристикам (включая и такие параметры, как фрактальная размерность сети притоков) существенно отличаются от земных рек, но при этом достаточно близки к долинам ледников. Возможно, именно ледники ответственны за формирование сети каньонов [5]. С другой стороны, найденные в марсианских породах гематиты [6] свидетельствуют о гидротермальной активности, причем в относительно недавнюю эпоху. В толще вечной мерзлоты могут образовываться довольно крупные, толщиной 30-100 м и диаметром до 10 км, линзы жидкой воды, подогреваемой локальной тектоникой. В некоторых случаях линза может перегреться и закипеть, и тогда вытесниние объема воды, сравнимого с объемом кометы – более 1015 г – на поверхность приводит к образованию катастрофического селевого потока, образующего глубокий каньон. Существенным здесь является то, что течет уже не жидкая вода, а смесь грязи, льда и пара, причем течет лишь эпизодически. Насколько такой механизм может объяснить реальный марсианский рельеф, окончательно ответить смогут лишь детальные численные расчеты.
Пока готовилась эта статья, появился пресс-релиз НАСА, торжественно сообщающий, что наконец найдены неоспоримые доказательства жидкой воды на Марсе. В ущелье Кандор обнаружены террасы, которые могли возникнуть в результате длительных осадочных процессов на дне древнего водоема. Правда, авторы тут же оговариваются, что это не единственно возможная интерпретация, в принципе, такие террасы могли возникнуть и в результате «сухого» атмосферного выветривания. Но пейзаж, без сомнения, впечатляет:
Рис. 4. Последнее доказательство теплого палеоклимата: древние донные отложения.
Рис. 5. Свидетельства современной активности грунтовых вод в долине Ноах (a), и на склонах каньона Ниргал (b,c).
И, наконец, недавно были найдены совсем короткоживущие, не более нескольких десятков лет, структуры, похожие на следы просачивающейся из-под корки вечной мерзлоты жидкой воды. Характерно, что все такие «родники» обнаружены на северных склонах глубоких каньонов, где атмосферное давление хоть ненадолго, но позволяет сохранить воду от моментального холодного вскипания. Разумеется, такая смелая интерпретация, основанная лишь на изображениях, встречает довольно жесткую критику. В редакционной статье нашего журнала читатель может ознакомится с точкой зрения астрофизика-релятивиста. Будучи геофизиком-планетчиком и «марсианином», я не берусь интерпретировать эти катинки тем или иным образом. Наверное, сделать это грамотно может лишь тот, кто с геологическим молотком в руках прошел не одну сотню километров по марсианским дюнам. Будут это космонавты или автоматические марсоходы - в любом случае решать следующему поколению. Нам же остается уповать на самый надежный дистанционный метод - инфракрасную спектроскопию. Если ТЭС уверенно покажет молодые отложения минералов, характерных для открытых источников воды, скажем, растворимых солей, вблизи этих «ручейков» - значит, скорее всего, вода действительно есть. Читателя, всерьеез интересующегося возможным устройством современных грунтовых вод на Марсе, отсылаю к работе [6].
Но марсианская гидрология – это не только палеоклимат и вечная мерзлота. Современный цикл марсианской воды – это еще около 1014 г паров в атмосфере, те самые 10-30 микрон осажденной воды, а также облака, хорошо заметные в виде белесой дымки на изображении, полученном Хаббловским телескопом (Рис. 1). Кроме того, это сезонные полярные шапки и ночные туманы, оставляющие на поверхности планеты микроскопический слой инея. Наконец, это и «дыхание» реголита, за миллиарды лет раздробленного метеоритами глинистого грунта, обладающего хорошими абсорбционными свойствами. Несмотря на относительно небольшой объем атмосферных запасов воды, именно атмосферные процессы играют определяющую роль в поддержании современного состояния поверхностных резервуаров марсианской воды. А состояние это не вполне обычное: оказывается, в Северном полушарии воды почти на порядок больше, чем в Южном! Чем могла быть вызвана подобная асимметрия? Имеет ли это какое-либо отношение к климатическим катастрофам прошлого? Чтобы разобраться, что происходит с водой в атмосфере, на борту орбитальных аппаратов "Викинг" были установлены высококлассные даже по лабораторным меркам спектрометры MAWD (Mars Atmospheric Water Detector) с разрешающей силой l /d l » 7500, настроенные на полосу водяного пара 1.38 мкм. Приборы успешно отработали на двух аппаратах в течение двух марсианских лет в 1976-79 годах (Марс делает полный оборот вокруг Солнца за 668 земных суток). Правда, специфика тогдашней технологии позволяла передавать на Землю не спектры, а лишь относительные значения яркости на нескольких длинах волн, по которым впоследствии восстанавливалась абсолютная влажность марсианского воздуха. По сути, прибор использовался в режиме полихроматора, что, естественно, сказалось на качестве восстановленной информации. Полученная в результате обработки данных MAWD карта в координатах "сезон-широта" (Рис. 6) указывает на явную межполушарную асимметрию: южное лето намного суше северного. Естественной причиной этого кажется асимметрия самих полярных шапок: в Северной шапке льда H2O гораздо больше, тогда как постоянная часть Южной полярной шапки состоит в основном из замерзшего CO2.
Рис. 6. Сезонная эволюция атмосферной воды на Марсе по данным эксперимента MAWD. Указаны микроны осажденной воды в столбе. Афелий соответствует солнечной долготе Ls = 70° . Из работы [7].
Существует две точки зрения на возможные причины межполушарной асимметрии поверхностных запасов марсианской воды. Во-первых, геология Северного и Южного полушарий тоже заметно различаются. Северное полушарие в среднем на 3-4 км ниже Южного, где только на дне самой глубокой впадины – Эллады – геопотенциал приблизительно такой же, как на Северном полюсе. Кроме того, Северное полушарие светлее, так как там больше осадочных глинистых пород, придающих Марсу характерный красноватый оттенок, и меньше древних базальтов. Глины, как известно, способны абсорбировать значительное количество воды. Поэтому, если глобальный транспорт воды в атмосфере играет малую роль по сравнению с локальным обменом, неравномерное ее распределение между полушариями можно было бы объяснить просто различной способностью образующих поверхность планеты пород поддерживать над ней определенное количество паров. В этом случае можно было бы ожидать, что такое асимметричное распределение воды очень древнее, по крайней мере не моложе большинства современных осадочных пород, т.е. около миллиарда лет.
Согласно другой гипотезе, высказанной Клэнси и коллегами [7], причиной является асимметрия смены сезонов в двух полушариях. Дело в том, что орбита Марса обладает заметным эксцентриситетом, e=0.09, так что модуляция солнечного потока между афелием, т.е. точкой максимального удаления от Солнца, и противоположной точкой перигелия достигает 40%. Поэтому лето в Северном полушарии длиннее и холоднее, чем в Южном. Более низкие, чем в перигелии, температуры приводят к конденсации паров воды в атмосфере на относительно небольших высотах, менее 10 км, там, где доминируют направленные к экватору воздушные потоки глобальной конвективной ячейки (на Земле такая ячейка существует только в тропических широтах и является причиной пассатных ветров). Выше уровня конденсации вода не проникает за счет быстрого гравитационного оседания микронных кристаллов конденсата (рис. 7а). Этот эфект приводит, в частности, к образованию в афелии тропического облачного пояса, который запирает испаряемую полярной шапкой воду в Северном полушарии, как показано на рис. 7б. В то же время, в перигелии, гораздо более теплый период времени, облака слабо влияют на перенос между полушариями, и вода, сублимирующая с Южной полярной шапки, перемешивается более равносмерно. За геологически короткие времена такой сезонный "насос" вполне мог бы перекачать воду в полушарие, лето в котором совпадает с афелием. Учитывая, что наклон оси вращения планеты мог многократно меняться в циклах Миланковича с периодом приблизительно 105 лет, можно заключить, что эта асимметрия относительно молода и, возможно, меняет знак. Косвенным признаком перемены полушарий в глобальном водяном цикле являются концентрические слоистые отложения полярных шапок. Не исключено, что на протяжении марсианской истории шапки многократно менялись местами. Фактически, вопрос об относительном вкладе обоих механизмов в формирование асимметричного распределения воды - это вопрос об относительной роли локального обмена и глобального транспорта. Немногие на сегодняшний день теоретические разработки склоняются ко второй гипотезе, причем интенсивный локальный обмен является необходимым условием стабилизации глобального цикла, играя роль диссипативого фактора. Если бы марсианский реголит не "дышал", сезонная миграция воды к экватору была бы невозможной, вода моментально бы захватывалась в "холодных ловушках" на границе полярной шапки.
Рис. 7. Меридиональный транспорт водяного пара (рис. внизу) и аэрозоля (рис. вверху) в атмосфере Марса вблизи афелия по результатам численной модели общей циркуляции. Цветами указаны концентрации в ppm (массовая доля * 10-6), шкала дана с левой стороны каждого рисунка. Стрелки обозначают плотность потока каждой примеси, т.е. призведение концентрации и зонально-средней скорости.