Смекни!
smekni.com

Межзвездная среда и туманности (стр. 1 из 2)

Л.С.Кудашкина

Вселенная - это, по сути, почти пустое пространство. Звезды занимают лишь ничтожную его долю. Однако, везде присутствует газ, хотя и в очень малых количествах. Это в основном водород, легчайший химический элемент. Если "зачерпнуть" обычной чайной чашкой (объем около 200 см3) вещество из межзвездного пространства на расстоянии 1-2 световых лет от Солнца, то в ней окажется примерно 20 атомов водорода и 2 атома гелия. В таком же объеме в обычном атмосферном воздухе содержится атомов кислорода и азота 1022.

Все, что заполняет пространство между звездами внутри галактик, называется межзвездной средой. И основное, что составляет межзвездную среду - это межзвездный газ. Он довольно равномерно перемешан с межзвездной пылью и пронизывается межзвездными магнитными полями, космическими лучами и электромагнитным излучением.

Из межзвездного газа образуются звезды, которые на поздних стадиях эволюции вновь отдают часть своего вещества межзвездной среде. Некоторые из звезд, умирая, взрываются как Сверхновые, выбрасывая обратно в пространство значительную долю водорода, из которого они когда-то образовались. Но значительно важнее, что при таких взрывах выбрасывается большое количество тяжелых элементов, образовавшихся в недрах звезд в результате термоядерных реакций. И Земля и Солнце сконденсировались в межзвездном пространстве из газа, обогащенного таким путем углеродом, кислородом, железом и другими химическими элементами. Чтобы постичь закономерности такого цикла, нужно знать, каким образом новые поколения звезд последовательно конденсируются из межзвездного газа. Понять, как образуются звезды, - важная цель исследований межзвездного вещества.

200 лет назад астрономам стало ясно, что кроме планет, звезд и появляющихся изредка комет на небе наблюдаются и другие объекты. Эти объекты из-за их туманного вида были названы туманностями. Французский астроном Шарль Мессье (1730-1817) был вынужден создать каталог этих туманных объектов, чтобы избежать путаницы при поисках комет. Его каталог содержал 103 объекта и был опубликован в 1784 г. Теперь известно, что природа этих объектов, впервые объединенных в общую группу под названием "туманности", совершенно различна. Английский астроном Уильям Гершель (1738-1822), наблюдая все эти объекты, за семь лет открыл еще две тысячи новых туманностей. Он же выделил класс туманностей, которые с наблюдательной точки зрения казались ему отличными от остальных. Он назвал их "планетарными туманностями", поскольку они имели некоторое сходство с зеленоватыми дисками планет.

Таким образом, мы будем рассматривать следующие объекты:

межзвездный газ;

межзвездная пыль;

темные туманности;

светлые туманности (самосветящиеся и отражательные);

планетарные туманности.

Примерно через миллион лет после начала расширения Вселенная еще представляла собой относительно однородную смесь газа и излучения. Не было ни звезд, ни галактик. Звезды образовались несколько позже в результате сжатия газа под действием собственной гравитации. Такой процесс называют гравитационной неустойчивостью. Когда звезда коллапсирует под действием огромного собственного гравитационного притяжения, ее внутренние слои непрерывно сжимаются. Это сжатие ведет к нагреву вещества. При температурах выше 107 К начинаются реакции, приводящие к образованию тяжелых элементов. Современный химический состав Солнечной системы является результатом реакций термоядерного синтеза, протекавших в первых поколениях звезд.

Стадия, когда выброшенное при взрыве Сверхновой вещество перемешивается с межзвездным газом и сжимается, снова образуя звезды, более всего сложна и хуже понятна, чем все остальные стадии. Во-первых, сам межзвездный газ неоднороден, он имеет клочковатую, облачную структуру. Во-вторых, расширяющаяся с огромной скоростью оболочка сверхновой выметает разреженный газ и сжимает его, усиливая неоднородности. В-третьих, уже через сотню лет остаток сверхновой содержит больше захваченного по пути межзвездного газа, чем вещества звезды. Кроме того, вещество перемешивается неидеально.

Может возникнуть вопрос, чем же завершается, в конце концов, космический цикл? Запасы газа уменьшаются. Ведь большая часть газа остается в маломассивных звездах, которые умирают спокойно, и не выбрасывают в окружающее пространство свое вещество. Со временем запасы его истощатся настолько, что ни одна звезда уже не сможет образоваться. К тому времени Солнце и другие старые звезды угаснут. Вселенная постепенно погрузится во мрак.

Но конечная судьба Вселенной может быть и иной. Расширение постепенно прекратится и сменится сжатием. Через много миллиардов лет Вселенная сожмется вновь до невообразимо высокой плотности.

Межзвездный газ

Межзвездный газ составляет около 99% массы всей межзвездной среды и около 2% нашей Галактики. Температура газа колеблется в диапазоне от 4 К до 106 К. Излучает межзвездный газ также в широком диапазоне (от длинных радиоволн до жесткого гамма-излучения).

Существуют области, где межзвездный газ находится в молекулярном состоянии (молекулярные облака) - это наиболее плотные и холодные части межзвездного газа. Есть области, где межзвездный газ состоит из нейтральных атомов водорода (области H I) и области ионизованного водорода (зоны H II), которыми являются светлые эмиссионные туманности вокруг горячих звезд.

По сравнению с Солнцем, в межзвездном газе заметно меньше тяжелых элементов, особенно алюминия, кальция, титана, железа и никеля.

Межзвездный газ есть в галактиках всех типов. Больше всего его в неправильных (иррегулярных), а меньше всего в эллиптических галактиках. В нашей Галактике максимум газа сосредоточено на расстоянии 5 кпк от центра. Наблюдения показывают, что кроме упорядоченного движения вокруг центра Галактики, межзвездные облака имеют также и хаотические скорости. Через 30-100 млн. лет облако сталкивается с другим облаком. Образуются газо-пылевые комплексы. Вещество в них достаточно плотно для того, чтобы не пропускать на большую глубину основную часть проникающей радиации. Поэтому внутри комплексов межзвездный газ холоднее, чем в межзвездных облаках. Сложные процессы преобразования молекул вместе с гравитационной неустойчивостью ведут к возникновению самогравитирующих сгустков - протозвезд.

Таким образом, молекулярные облака должны быстро (менее чем за 106 лет) превратиться в звезды.

Межзвездный газ постоянно обменивается веществом со звездами. Согласно оценкам, в настоящее время в Галактике в звезды переходит газ в количестве примерно 5 масс Солнца в год.

Итак, в процессе эволюции галактик происходит круговорот вещества: межзвездный газ -> звезды -> межзвездный газ, приводящий к постепенному увеличению содержания тяжелых элементов в межзвездном газе и звездах и уменьшению количества межзвездного газа в каждой из галактик. Не исключено, что в истории Галактики могли происходить задержки звездообразования на миллиарды лет.

Межзвездная пыль

Мелкие твердые частицы, рассеянные в межзвездном пространстве почти равномерно перемешаны с межзвездным газом.

Размеры крупных газо-пылевых комплексов, о которых мы говорили выше, достигают десятков сотен парсек, а их масса составляет примерно 105 масс Солнца. Но существуют и небольшие плотные газо-пылевые образования - глобулы размером от 0,05 до нескольких пк и массой всего 0,1 - 100 масс Солнца. Межзвездные пылинки не сферичны и размер их примерно 0,1-1 мкм. Состоят они из песка и графита. Образуются они в оболочках поздних красных гигантов и сверхгигантов, оболочках новых и сверхновых звезд, в планетарных туманностях, около протозвезд. Тугоплавкое ядро одето в оболочку изо льда с примесями, которую в свою очередь окутывает слой атомарного водорода. Пылинки в межзвездной среде либо дробятся в результате столкновений друг с другом со скоростями больше 20 км/с, либо наоборот, слипаются, если скорости меньше 1 км/с.

Присутствие в межзвездной среде межзвездной пыли влияет на характеристики излучения исследуемых небесных тел. Пылинки ослабляют свет от далеких звезд, изменяют его спектральный состав и поляризацию. Помимо этого пылинки поглощают ультрафиолетовое излучение звезд и перерабатывают его в излучение с меньшей энергией. Ставшее в итоге инфракрасным, такое излучение наблюдается в спектрах планетарных туманностей, зон H II, околозвездных оболочек, сейфертовских галактик.

На поверхности пылинок могут активно образовываться различные молекулы. Пылинки, как правило, электрически заряжены и взаимодействуют с межзвездными магнитными полями.

Именно пылинкам мы обязаны таким эффектом как космическое мазерное излучение. Оно возникает в оболочках поздних холодных звезд и в молекулярных облаках (зоны H I и H II). Этот эффект усиления микроволнового излучения "работает", когда большое количество молекул окажется в неустойчивом возбужденном вращательном или колебательном состоянии и тогда достаточно одному фотону пройти через среду, чтобы вызвать лавинообразный переход молекул в основное состояние с минимальной энергией. А в результате мы видим узконаправленный (когерентный) очень мощный поток радиоизлучения. На рисунке показана молекула воды. Радиоизлучение от этой молекулы идет на волне 1,35 см. Кроме нее очень яркий мазер возникает на молекулах межзвездного гидроксила ОН на волне 18 см. Еще одна мазерная молекула SiO располагается в оболочках холодных звезд, находящихся на заключительной стадии звездной эволюции и развивающихся к планетарной туманности.

Темные туманности

Туманности представляют собой участки межзвездной среды, выделяющиеся своим излучением или поглощением на общем фоне неба.

Темные туманности представляют собой плотные (обычно молекулярные) облака межзвездного газа и пыли, непрозрачные из-за межзвездного поглощения света пылью. Иногда темные туманности видны прямо на фоне Млечного Пути. Таковы, например, туманность "Угольный Мешок" и многочисленные глобулы. В тех частях, которые полупрозрачны для оптического диапазона, хорошо заметна волокнистая структура. Волокна и общая вытянутость темных туманностей связаны с наличием в них магнитных полей, затрудняющих движение вещества поперек силовых магнитных линий.