Все это вытекает из логической необходимости возможности однозначного описания интервала времени и 4-х мерного движения за исключением предположения о компактифицированном 5-м измерении. Отбрасывание предположения о 5-м измерении ставит необходимость существования механизма элементарного движения, сохраняющего направление перемещения в 4-х мерном пространстве, что представляет большую трудность, чем предположение о движении по поверхности компактифицированного 5-го измерения в единственном направлении по отношению к оси 5-го измерения. Такое условие может быть связано с особенностями других измерений, компактифицированных относительно 5-го.
Единственность направления перемещения на поверхности 5-го измерения обусловлена теми же причинами, которые обсуждались при рассмотрении проблемы движения. В противном случае существование элементарного отрезка перемещения не будет согласовано с выводами СТО. В принципе направление перемещения на поверхности 5-го измерения может быть любым (но не вдоль оси 5-го измерения) при условии, что оно единственное. Перемещение только вдоль оси 5-го измерения не позволяет точке иметь движение не только в пространстве, но и во времени, хотя возможно это и имеет некоторый физический смысл при определенных условиях. Наиболее приемлемо предположить направление направление перемещения на поверхности 5-го измерения перпендикулярно оси 5-го измерения.
Рассмотрим возможность не единственного направления перемещения на поверхности 5-го измерения для некоторого объекта. Элементарный вектор движения в этом случае оказывается развернут по отношению к 4-х мерному направлению перемещения, его проекция на это направление, соответственно, уменьшается. Такой объект также подчинялся бы инерциальности движения и, в сравнении с тождественными ему объектами, законам СТО. В сравнении же с объектом, имеющим направления перемещения на поверхности 5-го измерения перпендикулярно оси 5-го измерения, первый объект имел бы равную со вторым классическую 3-х мерную скорость, но меньшую релятивистскую, в чем заключается противоречие.
Резюмируя вышесказанное: в пространстве с последовательно компактифицированными 5-м и 4-м измерениями при дискретном характере движения выполняется детерминированная инерциальность движения и его подчиненность СТО.
Рассмотренная выше конфигурация сворачивания измерений выше 3-го относится к заряженным лептонам и кваркам. О причинах этого – см. далее гл. 4.3 и гл. 9.
Здесь и далее, если особо не оговорено, конфигурация сворачивания измерений выше 3-го и их нумерация соответствуют конфигурации заряженных лептонов и кварков.
2. Объекты суперпространства.
2.1. Объекты
Определим суперпространство как совокупность измерений, которые участвуют в построении нашей Вселенной.
Определим объект суперпространства как локальное нарушение упорядоченной структуры суперпространства (дефект). Структуризация – см. гл. 5 п. IX.
Объект суперпространства взаимодействует со структурой суперпространства – полем скаляров, приобретая при этом дополнительные свойства.
Объект суперпространства, получивший дополнительные свойства в результате взаимодействия с полем скаляров является объектом материи.
Свойства объектов материи проявляются при их взаимодействии друг с другом.
Свойства суперпространства – структура, исчисляемость и прочие – проявляются при взаимодействии материальных объектов. Без материи суперпространство – понятие скорее математическое и умозрительное, нежели физическое.
2.2. Движение объектов
Объект суперпространства и, следовательно, материальный объект обладает свойством обязательного самодвижения.
Движение является следствием взаимодействия объекта со структурой пространства. Объект (за исключением фотона) изменяет свойства соседнего скаляра, превращая его в себе подобный объект, сам же объект превращается в скаляр.
Конфигурация сворачивания 6-го и 7-го измерений скаляра имеет вид одновременного разнонаправленного сворачивания (см. далее гл. 9). Такая конфигурация является стабильной, но может измениться при взаимодействии другими объектами.
Положительно компактифицированное измерение объекта (6-е или 7-е, одно из двух при одновременном сворачивании и 6-е для последовательного сворачивания) взаимодействует с отрицательно компактифицированным измерением скаляра так, что положительно компактифицированное измерение объекта разворачивается. Затем оно сворачивается положительно компактифицированным измерением скаляра. Таким образом объект заменяет местоположение скаляра. Аналогично происходит взаимодействие отрицательно компактифицированного измерения объекта и положительно компактифицированного измерения скаляра.
Пространственная плоскость скаляров является поляризованной: “вверх” ориентировано положительно компактифицированное измерение скаляра, “вниз” – отрицательное. Скаляры никак не взаимодействуют друг с другом. Объекты с противоположным скаляру видом сворачивания измерений взаимно уничтожаются с соседним скаляром. Объект (не скаляр и не антискаляр), находящийся между двумя плоскостями скаляров будет взаимодействовать со скаляром той плоскости, по отношению к которой ориентация его компактифицированных измерений способна к взаимодействию. Таким образом объект не просто движется, но движется в единственном направлении.
Для внешнего наблюдателя скорость движения объекта зависит от выбора системы координат в 4...5 измерениях.
За исключением фотонов, в собственной локальной системе координат объект перемещается по замкнутой траектории внутри трубки. Для внешнего наблюдателя, обладающего иной локальной системой координат, траектория объекта может превратиться в разомкнутую (без учета искривления “линейных” измерений) сложную спираль. “Линейными” измерениями будем именовать 1...3 измерения пространства.
Объект может двигаясь по спирали 4-го измерения “огибать” другой объект, размер которого меньше проекции диаметра трубки 4-го измерения на ось трубки второго объекта. При равенстве диаметров трубок такая проекция равна длине волны первого объекта (см. далее гл. 3 п. 1).
3. Возмущения поля скаляров, вызываемые объектом
3.1. Возмущения поля скаляров в присутствии объекта
Объект, находящийся в любой точке суперпространства, оказывает на поле скаляров воздействие, вызванное взаимодействием отличающихся друг от друга структур поля скаляров и самого объекта. В зависимости от конкретного вида структуры объекта (способа сворачивания 4...7 измерений – см. далее гл. 9) происходит возмущение поля скаляров, выражаемое в локальном изменении (искривлении) суперпространства, одинаково направленное во все стороны на торовой поверхности трубки объекта.
Скорость передачи возмущений в поле скаляров постоянна по причине однородности поля скаляров и, по-видимому, равна скорости движения объекта в поле скаляров.
При движении объекта в поле скаляров возмущения, создаваемые в соседних точках, находящихся на пути перемещения объекта, накладываются друг на друга. Такие возмущения можно разделить на распространяемые вдоль линии движения и перпендикулярные линии движения.
1. Объект, замещающий скаляр, оказывает воздействие на скаляр, расположенный по направлению вектора скорости объекта. Поскольку в 4-х мерной системе координат объект движется с постоянной скоростью и возмущения передаются с той же скоростью, то область суперпространства, находящаяся в направлении движения объекта, имеет стабильную возмущенную структуру, для системы координат, находящейся в точке нахождения объекта.
Объект, перемещаясь со своего местоположения на замещение другого скаляра, оставляет после себя возмущенное состояние поля скаляров. Такое возмущенное состояние в отсутствие вызвавшего его объекта через некоторое время возвращается в первоначальное невозмущенное состояние. Кроме того, на скаляр, расположенный против направления вектора скорости объекта, оказывается воздействие со стороны объекта. Эти два процесса также создают стабильную структуру возмущений поля скаляров “позади” объекта.
2. Возмущения поля скаляров, возникающие в направлении, перпендикулярном направлению движения объекта, характеризуются:
а) возникновением и распространением при появлении вблизи воздействующего объекта;
б) затуханием и восстановлением невозмущенной структуры при удалении воздействующего объекта.
Таким образом возникает колебание поля скаляров, имеющее характер прямого, а затем обратного движения. Такое колебание можно охарактеризовать длиной волны. Для связанной с объектом 4-х мерной системы координат со компактифицированным 4-м измерением длина волны в трубке постоянна и не зависит от чего-либо для данного объекта. В 3-х мерной системе координат “линейных” измерений длина волны будет являться проекцией на ось выбранного линейного измерения. Поскольку рассматриваемые колебания распространяются в направлении, перпендикулярном направлению перемещения в 4-х мерной системе координат, постольку величина проекции длины волны равна длине окружности трубки 4-го измерения помноженной на отношение скоростей C/V (C и V см. гл. 1). Подобные рассуждения справедливы для точечного объекта.
Таким образом, объект материи – это объект суперпространства, окруженный созданной им возмущенной структурой поля скаляров. Такое возмущение является неотъемлемой частью объекта материи. Колебательное возмущение структуры суперпространства вокруг объекта его вызывающего является полем виртуальных фотонов.