Смекни!
smekni.com

Свойства пространства с некоторыми компактифицированными измерениями (стр. 3 из 8)

В локальной системе координат в которой объект не имеет перемещения в “линейных” измерениях колебательные возмущения распространяются на всю поверхность 4...5 измерений объекта.

Различные виды объектов (см. далее гл. 9) по-разному воздействуют на поле скаляров. Мера воздействия объекта на поле скаляров проявляется как энергия объекта. Для внешнего наблюдателя энергия объекта будет зависеть от выбранной системы координат.

3.2. Возмущения поля скаляров в отсутствии объекта

Фотон – самостоятельное незатухающее движущееся колебание структуры суперпространства. Такое колебание может возникнуть в следующих случаях.

1. Поворот вектора скорости объекта в 4-х мерной системе координат с одним компактифицированным измерением под воздействием внешних сил, что для 3-х мерной системы координат “линейных” измерений эквивалентно изменению направления и (или) величины скорости перемещения. Возмущение, созданное объектом, продолжает перемещаться в поле скаляров с параметрами, полученными при его возникновении, “отрывается” от объекта. Таким образом объект излучает фотон.

2. Полное взаимоуничтожение двух объектов, имеющих противоположные характеристики сворачивания измерений. При исчезновении объекта остается созданное им возмущение.

Возникшее колебание поля скаляров – фотон, перемещаясь в трубке 5-го измерения, взаимодействует само с собой на поверхности трубки и образовывает стабильное кольцевое колебание. Проекция колебания в трубке 5-го измерения на “линейное” измерение – есть длина волны фотона, равная длине волны порождающего колебание объекта.

Колебания структуры суперпространства, создаваемые объектом, локально могут создавать условия аналогичные создаваемым другими объектами или группами объектов. Такие локальные колебания можно рассматривать как виртуальные объекты или группы объектов.

Скорость распространения колебаний структуры суперпространства одинакова во всех направлениях на поверхности компактифицированных измерений и определяется свойством структуры суперпространства локально переходить из нормального состояния в измененное и обратно.

Колебательные возмущения поля скаляров, созданные разными источниками, создают смешанные наложенные друг на друга колебания. Такие колебания в разных точках суперпространства могут как взаимно дополнять друг друга, так и взаимно компенсировать.

4. Некоторые свойства объектов

4.1. Неопределенность местоположения объекта

Систему координат объекта можно определить в любой точке локальной области компактифицированных измерений принадлежащей объекту. Проекция точки начала координат объекта на плоскость “линейных” измерений находится в любой точке некоторой замкнутой области на этой плоскости. Таким образом, при неизвестных конкретных параметрах движения в 4...5 измерениях, координаты объекта являются неопределенными и о них можно сказать лишь, что они достоверно находятся внутри некоторой области.

Невозможно, используя данные о движении объекта только в некотором измерении, определить координаты объекта в этом измерении точнее, чем диаметр трубки измерения, компактифицированного по отношению к рассматриваемому. Это справедливо и для времени, как одному из измерений. Таким образом, мы можем обнаружить объект в любой точке области неопределенности.

4.2. Квантование

Причина квантования заключается в структуризации измерений компактифицированного пространства.

Рассмотрим точку измерения в которой компактифицированно второе измерение по отношению к первому. К этой точке “привязана” некоторая область компактифицированного измерения, с размерами, характеризующимися радиусом кривизны компактифицированного измерения. Область компактифицированного измерения, в свою очередь, имеет проекцию на измерение, по отношению к которому сворачивается второе. В связи с этим возникает два момента:

а) точка измерения проецируется на область вокруг себя посредством компактифицированного в этой точке второго измерения;

б) имеется некоторая область измерения, которая проецируется на точку, находящуюся внутри области, посредством компактифицированного в этой точке второго измерения.

Тем самым можно сказать, что неопределенность и квантование – две стороны одного явления в зависимости от того какую применять систему координат (с каким количеством компактифицированных измерений) при рассмотрении явления.

Квантование обладает следующими свойствами.

1. Поскольку квантование возникает вследствие различия свойств сворачивания измерений объекта и поля скаляров суперпространства, постольку квантование имеет отношение непосредственно к объекту и его системе координат. Таким образом, область квантования имеет пространственную привязку к объекту но не к конкретной точке суперпространства, то есть квантование относительно.

2. При квантовании создается область с едиными “внутренними” свойствами. Объект в области квантования имеет единые свойства, зависящие от системы координат измерений, характеризующих область, независимо от свойств измерений, по отношению к которым компактифицированны измерения области.

3. Система из двух (и более) объектов создает области квантования, зависящие от их совместного влияния на суперпространство, поскольку области квантования первого объекта будут находиться в зависимости от создаваемого вторым объектом искривления структуры суперпространства, и наоборот.

Для объектов и явлений можно рассмотреть следующие виды квантования.

1. Квантование собственных свойств объекта. Объект описывается как совокупность измерений, компактифицированных в определенном порядке и с определенным знаком сворачивания (см. далее гл. 9). При неизменности радиусов измерений, полученных при сворачивании для данного типа сворачивания, некоторые свойства объекта будут зависеть лишь от знака сворачивания. Изменение порядка сворачивания приведет к отсутствию некоторого свойства. Таким образом, например, электрический заряд можно характеризовать тройкой чисел -1, 0, +1.

2. Квантование движения. Движение есть совокупность единичных актов взаимодействия объекта со скалярами суперпространства (см. гл. 2. п.2).

3. Квантование позиционное. Поскольку объект описывается как некоторая поверхность нескольких компактифицированных измерений (см. далее гл. 9), постольку в области пространства измерений, по отношению к которым компактифицированны другие измерения, могут находиться несколько объектов с различными конфигурациями сворачивания измерений.

Для объекта с последовательным сворачиванием 4...5 измерений в данной точке не может находится более одного объекта с одинаковыми параметрами сворачивания 4...7 измерений. Поскольку может существовать 2 поверхности для положительного и отрицательного сворачивания 5-го измерения, постольку в одной области 1-го – 4-го измерений могут находиться два объекта с одинаковыми во всем свойствами, кроме зависящих от знака сворачивания 5-го измерения (положительный и отрицательный спин).

Объект может принадлежать замкнутой поверхности измерений, относительно которых компактифицированны его измерения. В этом случае идентичные объекты могут принадлежать различным таким поверхностям. Область местоположения электрона в атоме определяется порядком и знаком сворачивания 3-х “линейных” измерений. Варианты сворачивания образуют различные типы электронных оболочек.

4. Квантование пространственное, характерное только для системы из нескольких объектов, заключающееся в том, что некоторый процесс не может происходить в любой области пространства, но только в допустимой.

Проекция области компактифицированного измерения на область второго измерения, по отношению к которому компактифицированно первое, определяет то, что всей области проекции на второе измерение будут принадлежать свойства точки второго измерения, относительно которой компактифицированно первое измерение.

Например, если второе измерение имеет переменный радиус кривизны, то свойство квантования определит в нем области равной кривизны относительно некоторой точки для системы координат, не включающей в себя компактифицированные измерения.

Электрон в атоме переходит из одной области с одним набором свойств в другую область с другим набором свойств. Для системы координат, не включающей в себя компактифицированные измерения, свойства пространства в атоме изменяются скачкообразно и перемещение электрона с орбиты на орбиту видится также скачкообразным. Однако, в системе координат, включающей в себя компактифицированные измерения, дискретность исчезает.

Например, можно предложить конфигурацию из четырех последовательно компактифицированных измерений, так, что второе и третье имеют равные радиуса сворачивания. Тогда определим скорость объекта, перемещающегося в такой конфигурации компактифицированных измерений, как длину окружности третьего измерения, деленную на длину окружности четвертого измерения, и что длина большой окружности тора третьего измерения относится к диаметру четвертого как число K. Затем, из условия равенства радиусов второго и третьего измерений найдем, что поверхность второго-третьего измерений состоит из K торов третьего измерения. Кроме того, определим отношение длины окружности первого измерения к диаметру второго, как число M. Таким образом, общая длина трубки четырех измерений равняется произведению M на квадрат K. Если уменьшить радиуса 2-го и 3-го измерений в N раз, то, при условии сохранения длины трубки четырех измерений, радиус 1-го измерения увеличится в квадрат N раз, а скорость уменьшится в N раз. Пропорциональность радиуса орбиты произведению начального радиуса на квадрат целого числа N и пропорциональность произведения радиуса орбиты на скорость перемещения произведению константы на целое число N характерно для простейших состояний электрона в атоме.