Опытный образец вещества, вероятно, должен иметь массу , приблизительно, от 50 граммов до нескольких сотен килограммов.
Требуется также учитывать световое давление, давление радиоволн от источников освещения, радио и телевизионных станций; термические и барометрические изменения длин рабочих частей весов и их деформации; деформации напряжений деталей весов, Учитывать и неравномерность (не строгую пропорциональность) изменения длины рабочей пружины весов под весом все новых и новых равновеликих масс и одной и той же гири и под весом витков самой пружины.
Если под грузом, скажем, 100 граммов, рабочая пружина изменяет свою длину на, скажем 6-60 см (при условии строгой пропорциональности ее растяжения под действием масс любой относительной величины в пределах калибровки весов), тогда изменение веса опытного образца на 1,5*10^-10 пружина изменит свою длину на 9*10^-10 - 9*10^-9 сантиметра, приблизительно, на одну миллиардную - одну стомиллионную долю сантиметра, то есть, одну стомиллионную - одну десяти миллионную часть миллиметра.
Зарегистрировать это изменение длины рабочей пружины весов представляет существенные трудности. Ведь в оптическом диапазоне мы можем различать детали не мельче одной двухтысячной доли миллиметра. Поэтому эту величину мы не можем зафиксировать, например, отслеживая показания весов через микроскоп! Даже, если использовать без инерционные рычаги тысячекратного повышения угла поворота стрелки шкалы измеряемых масс (а ведь могут быть истирания соприкасающихся частей этих рычагов, их залипания и прочее. И здесь будут действовать дополнительные силы трения и чувствительность весов может понизиться больше, чем ожидается выигрыш. Можно попытаться отслеживать показания весов с помощью зеркала, отклоняющего тончайший луч лазера пропорционально малым изменениям массы. Но это тоже проблематично. Наиболее перспективно все же использование пьезоэлементов в качестве основного или вспомогательного элемента весов.
В качестве рабочего прессорного пьезоэлемента в подобных весах есть резон попробовать создать эластичный (резиноподобный ) элемент с большой амплитудой рабочей деформации и сверхвысокой чувствительностью.
Пьезоэлемент, работающий на изгиб, или на сжатие-растяжение, спараллеленный с рабочей пружиной весов, может также помочь существенно повысить чувствительность весов.
Следует учесть скачкообразные торможения и подвижки пружин, рычагов сверхчувствительных весов за счет фрикционных торможений, залипания подвижных частей под воздействием сил молекулярного сцепления, электростатического электричества, намагниченности.
Следует также учитывать естественные неравномерности вращения Земли! Ведь центробежная сила на поверхности Земли при этом может вносить существенные искажения на показания сверхточных весов! Оптимально было бы поэтому установить весы на северном или южном полюсе Земли!
Но где-то, за период между первыми и последующими взвешиваниями, может произойти подъем или опускание коры Земли на миллиметры-сантиметры, а также широтные перемещения континентов, что соответствующим образом изменит как центробежную силу, действующую на измеряемый образец массы, так и силу взаимного притяжения Земли и опытного образца вещества! Значит, необходимо с помощью спутников Земли очень точно отслеживать этот параметр в зоне расположения весов!
Еще надо учитывать весь спектр приливных возмущений от Луны, Солнца, Юпитера, других планет, Ядра Галактики (подъем-опускание коры (увеличение-уменьшение центробежной силы), величины сил и их направление от притяжения внешними космическими телами).
Рабочая пружина весов должна иметь очень стабильный показатель упругости. Тем не менее, эта пружина не должна быть под постоянной нагрузкой, чтобы не снижать упругость пружины от эффекта усталости материала пружины! Поэтому весы должны иметь лифт подъема образца массы до полного снятия нагрузки с пружины и прецизионно точного опускания этого образца до положения его взвешивания.
Необходимо применять сейсмогасители, чтобы сейсмические волны не повредили эти весы и не нарушили точность их показаний.
Другое практическое применение этих весов - применение в сейсмологии для регистрации сверхмалых сейсмических колебаний.
Вообще, следует параллельно использовать по несколько экземпляров всех возможных принципиально отличающихся конструкций весов. Чтобы исключить случайные ошибки, артефакты. И проводить такие измерения в нескольких пунктах Земли!
Лишь предварительная работа потребует вложения нескольких десятков тысяч - нескольких сотен тысяч долларов. А общая продолжительность работ может быть от 1,5 - 3 лет до 5-10-15 лет и более, пока не будет получен абсолютно однозначный результат: есть ожидаемый прирост массы, или нет.
16.05.98. Я нашел один из вариантов сверхточных весов. – Это система Солнце-Земля! Поскольку Земля каждый астрономический год вынуждена пробегать дополнительно к предыдущему около 50 метров за счет космологического роста пространства между Солнцем и Землей (реальный прирост расстояния между Солнцем и Землей: не менее 7-8 метров в год, который складывается из собственно космологического роста объема пространства между Землей и Солнцем, отодвигания Земли от Солнца давлением электромагнитных волн (световое давление), давлением частиц солнечного ветра), постольку астрономический год Земли, при ее средней орбитальной скорости 29,765 км/с, должен систематически увеличиваться, приблизительно, на 1,68* 10^-3 секунды.
Если бы Солнце и Земля не росли в массе, то Солнце теряло бы достаточно ощутимую долю своей массы на излучения света, истечение частиц “солнечного ветра”. Поэтому сила взаимного их гравитационного притяжения систематически снижалась бы. И систематический ежегодный прирост длительности астрономического года Земли превышал бы 1,68*10^-3 секунды.
Космологический прирост массы Солнца и Земли должен приводить к увеличению силы гравитационного притяжения между ними. Поэтому систематический ежегодный прирост длительности астрономического года Земли будет меньше 1,68*10^-3 секунды.
Но автоускорение спейсонов, пролетевших сквозь Солнце и Землю, снижает силу взаимного гравитационного притяжения Солнца и Земли. Порядок величины этого эффекта неизвестен. Необходимо тщательно проработать детали теории гравитационного взаимодействия космологически растущих тел в среде из автоускоряющихся спейсонов. Тем не менее, прецизионно точные измерения длительности астрономического года Земли на протяжении десятков лет дадут материал для однозначного вывода о наличии или отсутствии космологического роста массы Солнца и Земли!
Список литературы
1. А. К. Макеев. ГИПОТЕЗА О САМОДОСТАТОЧНОЙ ВЕЧНО РАСТУЩЕЙ ВСЕЛЕННОЙ! http://www.sciteclibrary.ru/rus/catalog/pages/1600.html
2. А.К. Макеев. НАСКОЛЬКО ДАЛЕКО МОГУТ ВИДЕТЬ АСТРОНОМЫ? http://www.sciteclibrary.ru/rus/catalog/pages/2003.html