Смекни!
smekni.com

Что такое энтропия? (стр. 8 из 9)

Вспомним, например, описанный в самом конце второго раздела простейший мысленный эксперимент, итоговая суть которого сводилась к иллюстрации того базового факта, что при любом реальном теплообмене остающееся в его ходе неизменным количество теплоты всегда распределяется в конечном счете по большей теплоемкости. Там, правда, мы для наглядности полагали, что исходно все имеющееся в системе количество теплоты заключено в одном более нагретом теле, ибо температура более холодного условно принималась равной нулю, и считали к тому же далее, что сам теплообмен продолжается до установления в системе полного теплового равновесия, характеризующегося равенством температур обоих тел. Но очевидно, что сама отмеченная главная закономерность остается полностью в силе и при отказе от этих упрощающих условий, что прямо следует из следующего несложного логического рассуждения. Ведь если в начале указанного мысленного эксперимента та теплоемкость, по которой распределено содержащееся в системе количество теплоты, была наименьшей (она равнялась теплоемкости только одного из двух образующих систему тел), а по его завершении стала наибольшей (равной сумме теплоемкостей обоих названных тел), то, значит, любая промежуточная ситуация в ходе рассматриваемого теплообмена характеризуется промежуточным значением и самой интересующей нас сейчас средней теплоемкости! Причем чем ближе процесс теплообмена к своей конечной точке, тем больше и указанная средняя теплоемкость, в связи с чем любая его конкретная стадия с необходимостью должна характеризоваться опять-таки обязательным возрастанием последней. А это и означает, что любой реальный процесс теплообмена, выступающий, в конечном счете, всего лишь определенным этапом рассмотренного выше идеализированного, тоже всегда ведет к возрастанию той средней теплоемкости, по которой условно распределяется остающееся в его ходе неизменным общее количество теплоты!

Но ведь возрастание средней теплоемкости при неизменном количестве теплоты, как не раз уже отмечалось выше и что хорошо видно непосредственно из формулы (5), есть лишь другая форма выражения уменьшения собственно энергии Карно! Иными словами, обязательный рост средней теплоемкости при теплообмене есть на самом деле лишь другая форма выражения неотвратимого уменьшения в его ходе самой названной энергии, что отражает многократно обсуждавшуюся уже ранее общую физическую закономерность – в ходе любого самопроизвольного процесса обязательно должен сокращаться соответствующий ему вид энергии! А это, в конечном счете, означает, что, громогласно изгнав вроде бы на словах из своего базового научного арсенала энергию Карно (а вместе с нею и весь указанный фундаментальный физический принцип в целом, ибо никакая энергия по современным представлениям в ходе теплообмена не изменяется!), Клаузиус все же никак не сумел без них на деле обойтись, тут же возвратив в действительности ту же энергию Карно в построенную им горе-теорию просто под новым названием “энтропия”!

Этот наш важнейший вывод легко объясняет также далее и все остальные особенности указанной его курьезной теории, о которых кратко говорилось ранее. Становится понятно, скажем, сразу, почему введенная им энтропия оказывается функцией, “зависящей только от данного состояния тела, а не от пути, по которому тело в это состояние пришло”. Ведь таким свойством, как показал еще в 1839 г. в созданной им теории потенциала Карл Гаусс, обладает именно потенциал и связанная с ним потенциальная энергия! Иначе говоря, Клаузиус вполне мог уловить даже из указанного очевидного обстоятельства прямой намек на то, что найденная им вроде бы совершенно новая функция состояния является в действительности просто превращенной формой самой энергии! Но он прошел мимо и этой, уже чисто математической подсказки, так и оставшись вопреки всему при своем глубоко извращенном мнении. Излишне теперь останавливаться также специально и на том обсуждавшемся уже ранее факте, что обратимые термодинамические процессы – это попросту другое название обычных консервативных процессов в остальных разделах физики. Да и вообще можно уже окончательно сказать, что все многочисленные особые понятия термодинамики, большинство из которых просто не имеет смысла теперь отдельно обсуждать, являются на самом деле хорошо известными физическими понятиями, искусственно трансформированными, однако, в нечто совершенно неудобоваримое. Воистину прав был, таким образом, великий Анри Пуанкаре, когда, словно предвидя подобный итог настоящего раздела (а также и всей данной статьи в целом!), подчеркнул в приведенном в качестве эпиграфа к нему своем лаконичном утверждении, что правильно примененная “математика - это искусство давать разным вещам одно название”!

5. Заключение

Успешное восстание против принятого взгляда имеет своим результатом неожиданное и совершенно новое развитие, становясь источником новых философских воззрений.

А.Эйнштейн, Л. Инфельд

Итак, теперь хорошо видно, почему ложная в своей основе теория Клаузиуса позволила, тем не менее, описывать с достаточной для практики степенью точности очень многие тепловые явления – пусть и в совершенно извращенном виде, но она все же содержала в себе почти все необходимые для этого физические понятия. Но ее глубокая логическая иррациональность привела, в конце концов, к тому, что термодинамика не только оказалась практически недоступной для понимания абсолютному большинству обыкновенных (т. е. мыслящих в своей основе главным образом логически) людей, но и напрочь запутала самих физиков. (Лишив их, в том числе, возможности осмыслить достаточно строго и сами изложенные выше предельно простые выводы.) А главное - она на столетия закрепила в физической теории умозрительное предположение Майера, Джоуля и иже с ними о якобы полном сохранении энергии в природе, чем вообще нанесла науке колоссальный практический ущерб! Сегодня он стал уже настолько ощутимым, что сама жизнь настоятельно потребовала коренного пересмотра старых взглядов.

Однако благодаря той же термодинамике, как было продемонстрировано в предыдущей статье, родились и ярчайшие положительные достижения. Речь идет, разумеется, об обсуждавшемся уже там подробно величайшем научном открытии конца ХIХ века, сделанном гениальным Людвигом Больцманом и некоторыми другими известными учеными - о статистическом обосновании самой термодинамической энтропии! Но только теперь мы уже можем окончательно заявить на основании всего ранее сказанного, что на самом деле знаменитая формула Больцмана, связывающая энтропию с итоговой вероятностью состояния системы, определяет в действительности так называемую обобщенную среднюю емкость физической системы! И написать эту формулу уже в несколько ином, существенно уточненном виде:

C = k logW,

где k – постоянная Больцмана, W – вероятность состояния, С – сама обобщенная средняя емкость, об истинной сути которой мы еще будем говорить подробно в следующих статьях.

Иначе говоря, именно емкость, как теперь ясно, и отражает вероятность состояния системы, которая, в свою очередь, зависит, как известно, от количества образующих систему частиц и имеющихся у них степеней свободы. А также итогового распределения параметров этих частиц по указанным степеням, ибо наиболее вероятным, как показывает статистика, является именно равновесное распределение. Отсюда также становится понятной и следующая предельно простая мысль, разрешающая, наконец, давно волнующую физиков проблему установления сущности инертной массы (и вообще самой инерции в целом): масса, будучи, в конечном счете, просто кинетической емкостью системы, тоже прямо зависит, естественно, от вероятности ее итогового состояния! Чем выше эта вероятность, которая пропорциональна, в том числе, числу образующих систему частиц, тем сложнее изменить данное ее состояние, откуда и сами инертные свойства, растущие с числом частиц системы. Подробно все эти закономерности будут рассмотрены, как отмечалось, в специальной отдельной нашей статье, посвященной статистической механике, но и сейчас их справедливость может быть подтверждена хотя бы тем, что и сама теплоемкость, как хорошо известно, тоже напрямую связана с названными сейчас конкретными характеристиками – количеством образующих систему частиц и числом допустимых степеней свободы.

В полной мере все сейчас сказанное относится, естественно, и к самой энергии - энергия, как уже отмечалось, это просто еще одна форма выражения той же вероятности состояния системы. Она, конечно, несколько усложнена по сравнению с собственно емкостью, но в принципе имеет все же полное право на жизнь уже хотя бы потому, что сам термин “энергия” стал сегодня по существу широко распространенным обиходным понятием. К тому же энергия связана с емкостью обратно пропорциональной зависимостью (отсюда, кстати, известный факт неаддитивности энергии при аддитивности энтропии) и потому не растет, а убывает при самопроизвольном движении системы к наиболее вероятному равновесному состоянию, что с психологической точки зрения удобнее для восприятия. Ведь теперь можно говорить именно о “затратах” энергии, подобно затратам денег, материалов и т. д. И, наконец, само понятие энергии неотделимо от понятия потенциала, самопроизвольная убыль которого может трактоваться как хорошо известный сегодня самопроизвольный переход системы от упорядоченного состояния к хаосу. Это еще одна форма выражения все той же тенденции к самопроизвольному повышению вероятности состояния системы, которая достаточно наглядна и потому тоже имеет полное право на свое общее существование