Величину максимальной энтропии Е “n”-разрядного двоичного числа можно определить по формуле:
Е = (1/2)[(n - m)2 + n – m] +2m+1-2,
где m целое и m = k max в неравенстве 2k < n. (k целое)
Итак, что же после всех наших рассуждений мы обнаруживаем в "сухом остатке"?
Пожалуй, кроме формулировки критерия хаоса, можно отметить еще неудовлетворенность в связи с употреблением термина "информация" без того, чтобы иметь ясное представление об этом понятии. А ведь использование этого понятия не по назначению могло привести нас к ложным выводам. Например, почему мы думаем, что "из некоторой таблицы двоичных чисел, состоящей, например, из нулей и единиц, можно извлечь информации больше, чем из таблицы того же объема, но содержащей в себе только нули"?
Пусть, например, числа принимаются от некоторого источника информации и затем последовательно записываются в две одинаковые таблицы. Пусть в одной таблице оказываются записанными только "нули", а во второй — как "единицы", так и "нули". Известно, что количество принятой информации зависит только от вероятности приема того или иного числа, а не от того, какие числа были приняты на самом деле. И если эти вероятности были одинаковы, то и количество информации в обеих таблицах равно друг другу. Так что наши предыдущие высказывания, будто бы в таблице, состоящей из хаотического набора "нулей" и "единиц" больше информации, чем в таблице, состоящей только из "нулей", вызывают определенные сомнения.