Смекни!
smekni.com

О физической обоснованности некоторых идей в физике и космологии (стр. 1 из 4)

Йохан Керн

В статье обосновывается необходимость вернуться к независимости мысленных понятий и необходимость рассмотрения полной логической цепочки физического процесса в космологии и физике.

Введение. Об ограничении свободы слова в физике и космологии

Ещё сто лет тому назад в физике и космологии каждый был волен фантазировать сколько хочет: главное, чтобы полученные выводы более или менее соответствовали наблюдаемой реальности. Время мыслилось как некоторая от нас независимая величина и могло иллюстрироваться равномерным вращением небесного тела или даже просто тиканием часов. Но вот с 1905 г. после написания Эйнштейном (1879-1955) своей эпохальной работы об электродинамике движущихся сред [1] стало ясно, что время зависит по крайней мере от скорости движения и перестало быть независимым от чего бы то ни было. Не только время - длины и массы тел стали зависимыми от их скорости. Столь удивительных и непредставимых теоретических результатов, совершенно не увязывавшихся с существовавшим опытом, до него не получал никто. Это была истинная революция не только в физике, но и в мышлении.

Когда-то и пространственные координаты мыслились как нечто абсолютное, не зависящее ни от каких физических процессов. Ведь и они были мысленными, а не действительными. Как на них могло что-то влиять?! Но после написания Эйнштейном его общей теории относительности стало ясно, что и независимость мысленных пространственных координат становится делом прошлого. Теория относительности вторглась даже в свободу мышления. Конечно, в быту всё ещё можно петь “Die Gedanken sind frei” (мысли свободны, мысль не арестуешь), но в физике и космологии никак нельзя отклоняться от правил теории относительности. Автор известного в Германии учебника физики пишет: “In der modernen Physik geht nichts mehr ohne die Relativitдtstheorie. ” [2] (“В современной физике ничто уже не идёт без теории относительности”). Это немного похоже на цензуру и, соответственно, на диктатуру теории относительности. Но, наверное, это только говорит о необходимости считаться с реальностью. Свобода повзрослевшей науки, также и как свобода повзрослевших детей, становится в определённом смысле ограниченной. Такова жизнь. Для ободрения тех, кого это разочаровывает, заметим, что Аристотель, отец демократии, считал, что наилучшая форма правления – диктатура. При разумном диктаторе. Порадуемся тому, что Эйнштейн явно относится к разумнейшим личностям, а его теория относительности – к творениям разума.

Нечто подобное наблюдается и в космологии. После того, как Эдвин Хабл (Hubble, 1889-1953) в 1929 г. обнаружил разбегание галактик, возникла теория “большого взрыва”, произошедшего по теории Эйнштейна в момент времени t = 0. После этого знаменательного события уже нельзя заниматься вопросом: “А что же было до “большого взрыва”? Грамотные редакторы научных и популярных журналов саркастически ответят вам: “А ничего не было!” и отклонят вашу работу, даже не пытаясь отправить её к рецензентам. И здесь цензура, и здесь правление догмы? Но, может быть, и это совершенно правильно? Ведь французская Академия Наук ещё задолго до появления теории относительности тоже прекратила рассмотрение непрерывно поступавших проектов “вечных двигателей”. Некоторым иначе не втолкуешь, что “вечные двигатели” невозможны.

Рис. 1. Начальная позиция равносторонних треугольников. Стороны AB и B1A1 параллельны друг к другу и соприкасаются (отчётливо показанная щель между ними на самом деле отсутствует). В начальном положении треугольники могут перемещаться в направлениях, показанных стрелками. AB = B1A1.

1. Об одном мысленном эксперименте, который, казалось бы, противоречит теории относительности

Разумеется, этот эксперимент мы делаем только с целью углубить наше понимание теории относительности. Эксперимент очень простой, но, как мы убедимся, он довольно поучительный. Представим себе два равных по величине раносторонних плоских треугольника ABC и A1B1C1. Плоскости треугольников находятся на расстоянии R от общей (неподвижной) оси вращения, вокруг которой они могут вращаться независимо друг от друга. При совпадении плоскостей треугольников прямые AB и B1 A1 параллельны, (почти) соприкасаются друг с другом, а точки C и C 1 находятся друг против друга (рис. 1). Направление возможного движения совпадает с направлением прямых AB и B1 A1. Радиус R представим очень большим (астрономических размеров).

Снабдим теперь все угловые точки треугольников одинаковыми зараннее синхронизированными часами, а треугольник ABC ещё и наблюдателями с фотоаппаратами (наблюдателей будем обозначать одинаково с обозначением точек, в которых они находятся) и начнём вращать оба треугольника с одинаковым ускорением в противоположные стороны. (Направление движения показано на рис. 1 стрелками.) При достижении определённой зараннее договорённой линейной скорости v/2 ускорение прекращается и оба треугольника вращаются далее с одинаковой угловой скоростью. Когда-нибудь, по истечении весьма длительного промежутка времени прямая AB снова совпадёт с прямой B1 A1. В этот момент все наблюдатели делают снимки обоих треугольников (наблюдатель в точке C делает снимок в тот момент, когда видит прямую AB снова совпадающей с прямой B1 A1). Снимки наблюдателей A, B и C показаны на рис. 2, 3 и 4. С точки зрения этих наблюдателей треугольник A1B1C1 является движущейся системой координат, перемещающейся с относительной скоростью v. (Для любого достаточно короткого промежутка времени движение треугольников можно считать прямолинейным)

Рис.2.

На рис. 2 находится снимок наблюдателя C. На его снимке совпадают прямые AB с B1A1, показания часов в точках A,B, B1 и A1 совпадают. (Это естественно. Наши треугольники в начале путешествия получили синхронизированные часы и двигались в любой момент с одинаковой скоростью, но только в различном направлении. Естественно принять, что течение времени и изменение длин не зависят от направления движения). Показание часов в точке C1 отстаёт и сама точка C1 также смещена назад. Это оттого, что свет из точки C1 идёт дольше, чем из точек A, B, B1 и A1.

Рис.3.

На снимке из точки A (рис. 3) прямая B1 A1 оказывается короче прямой AB, часы в точке A1 отстают от часов в точке A. Но из снимка на рис. 2 мы уже знаем, что нам это только кажется: пока свет из точки A1 шёл к точке A, точка A1 дошла до точки B. Обозначим длину AB = L, а кажущуюся длину B1 A1 = L1. Тогда мы получим

L1= c t* и (L - L1) = vt*,

где t* - время, необходимое свету, чтобы пройти расстояние от точки A1 до A, а с – скорость света. Из этих двух равенств мы можем определить:

t* = L/( c + v) и L1 = L c /( c + v) (1)

(Чтобы нам в наших расчётах не учитывать эффекты из-за движения света в разных системах отсчёта, мы можем представить, что напротив точки A1 на прямой AВ находится зеркало, отражающее свет от точки A1 в сторону точки A. Так как прямые AB и B1A1 практически соприкасаются, то необходимый дополнтельный интервал времени для хода светового луча равен 0. В наших расчётах от этого ничего не меняется.

Этот же приём может быть применён и в следующих расчётах к нашему снимку 4.)

Рис.4.

На снимке из точки B (рис. 4) прямая A1 B1 оказывается длиннее прямой BA, часы в точке B1 отстают от часов в точке B. Но из снимка на рис. 2 мы опять-таки знаем, что нам это только кажется: пока свет из точки B1 шёл к точке B, точка B1 дошла до точки A. Обозначим кажущуюся длину A1B1 = L2. Тогда мы получим

L2= c t* * и (L2 - L) = vt**,

где t** - время, необходимое свету, чтобы пройти расстояние от точки B1 до точки В. Из этих двух равенств мы определяем:

t** = L/( c - v) и L2 = L c /( c - v) (2)

Полученные выражения (1) и (2) для длины A1B1 чем-то напоминают выражения, получаемые в теории относительности, но именно только напоминают. Странно прежде всего то, что у нас, в зависимости от точки наблюдения, получены 3 различных значения длины для A1B1, в то время как в теории относительности получено только укорочение движущегося отрезка, расположенного вдоль направления скорости движения, причём не кажущееся, а действительное. Разумеется, мы действовали не по Эйнштейну, но ведь длина отрезка A1B1 в движущейся системе координат должна быть одна и та же, независимо от точки наблюдения, и не кажущаяся, а действительная.

Посмотрим-ка внимательно, как это делал сам Эйнштейн, и не по учебнику, а по первоисточнику.

2. Конспект доказательства наличия своеобразных эффектов (сокращения длины отрезков, интервалов времени и пр.) в движущейся системе отсчёта по статье Эйнштейна [1] (с комментариями)

Сразу после названия “К электродинамике подвижных тел” [1] следует нечто вроде введения, в котором Эйнштейн, в частности, упоминает потерпевшие неудачу эксперименты с целью определить движение Земли относительно “светоносного эфира”. Кроме того, высказывается намерение обосновать предположение, что свет в пустом пространстве перемещается с постоянной скоростью, не зависящей от скорости источников света.

§1 посвящён определению понятия одновремённости. Эйнштейн предлагает считать одинаковые часы идущими синхронно, если время прохождения светового луча между часами в одну сторону равно времени прохождения в другую сторону. Кроме того, скорость света, определяемая как отношение двойного расстояния между двумя точками ко времени прохождения света от одной точки к другой и обратно, объявляется универсальной постоянной.

§2 посвящён относительности длин и времён (отрезков времени). В нём указывается, что длина подвижного стержня, измеренного в подвижной системе координат, не будет равна длине стержня в неподвижной системе координат. Показывается, что синхронные часы на подвижном стержне не являются синхронными при измерении в соответствии с §1 из неподвижной системы координат.