Смекни!
smekni.com

Геометрические свойства равнобедренных треугольников (стр. 2 из 2)

Теорема 3: О равных углах равнобедренных треугольников

Если два равнобедренных треугольника построены на одной основной высоте и равные углы при основании одного равны углу между боковыми сторонами второго, то их центры вписанной и описанной окружностей соответственно совпадут.

Исходные данные:

Равнобедренные ∆АВС и ∆ЕBF c общей основной высотой ВD = h. DO 1 = r и ВО 2 = R - радиусы вписанной и описанной окружностей равнобедренных ∆АВС и ∆ЕBF соответственно.

 ВАС =  ВСА =  EBF =  ,

 BEF =  BFE =  (рис. 3)

Рис. 3. Геометрическая интерпретация теоремы 3

Доказать:

h = R + r (10)

Доказательство:

Для равнобедренного ∆АВС:

Для равнобедренного ∆ЕBF:

По условию теоремы

 ВАС =  ВСА =  EBF =

=  ,  BEF =  BFE =  .

А так как

 BEF =  BFE =

,

получим:

Если

(10),

то

Действительно,

,

что и требовалось доказать.

Следствия из теоремы 3:

3.1. Если два равнобедренных треугольника построены на одной основной высоте и угол между боковыми сторонами одного равен углам при основании второго, то отношение соответствующих оснований равно разнице величины, обратной по значению косинусам равных углов при основании второго, и единице:

Так как

и

,

то

(11)

3.2. Если два равнобедренных треугольника построены на одной основной высоте и равные углы при основании одного равны углу между боковыми сторонами второго, то отношение соответствующих боковых сторон равно половине величины, обратной по значению синусам равных углов при основании второго:

Поскольку

и
,

то

.
.
(12)

Теорема 4: О половинных углах равнобедренных треугольников

Если два равнобедренных треугольника имеют общее основание и вершина, являющаяся пересечением боковых сторон первого, совпадает с центром вписанной во второй треугольник окружности, то центр описанной вокруг первого треугольника окружности лежит на пересечении перпендикуляров к боковым сторонам второго.

Исходные данные:

Равнобедренные ∆ АВС и ∆ АОС с общим основанием АС = 2  а, DO = r = H  радиус вписанной окружности и высота равнобедренных ∆ АВС и ∆ AOC соответственно.  ВАС =  ВСА =  ,  OAC =  OCA =

(рис. 4).

Доказать:

(13)

Рис. 4. Геометрическая интерпретация теоремы 4

Доказательство:

Исходя из рис. 4, получим следующую цепочку соотношений:

Тогда

(13)

При этом согласно определению равнобедренные ∆ АВС и ∆ АСS являются полуподобными, поскольку

и наоборот, а равнобедренные ∆АВС и ∆АОС являются половинноподобными, поскольку удовлетворяют определению:

 ВАС =  ВСА =  ,  OAC =  OCA =