Л.В.Логинов, многопрофильный комплекс (гимназия-лицей) N 109, г. Москва
Наверное, у каждого учителя есть желание объяснить материал по-своему или рассмотреть его с позиций, отличных от традиционных. Тем более что начавшееся профилирование обучения вынуждает это делать. Возьмем, к примеру, тему, которую проходят в школе и в 8-м, и в 10-м классах, – «Газы». Свойства газов упоминаются (или изучаются) уже в курсе природоведения в 5-м классе (!). Позже ребят знакомят с использованием сжатого воздуха, с приборами для измерения атмосферного давления, учат решать задачи на изменение давления воздуха при изменении других параметров, как правило, в автомобильной шине, шаре, резиновой лодке. Налицо определенный технический уклон, хотя изредка встречаются и другие задачи, например, как отпить воды из бутылки при плотно прижатых к горлышку губах, так что воздух в бутылку не пропускается, или, как пауку серебрянке построить воздушный домик в воде. Тот факт, что газовые законы активно работают в живой природе, широко применяются в медицине, как правило, не акцентируется, ни слова не говорится о том, зачем паук серебрянка строит себе тот самый воздушный домик, как он может сидеть в таком домике до получаса, а в состоянии анабиоза (спячки) – и дольше... Ведь при дыхании кислород-то непрерывно расходуется! Вдох и выдох, газообмен в легких у животных и у человека происходят тоже в соответствии с газовыми законами. Так что эта тема не только очень живая, но и актуальная. И остановиться на ней стоит.
Начнем с того, что закон Бойля–Мариотта начинает «работать на человека» (как, впрочем, и на любое млекопитающее) с момента его рождения, с первого самостоятельного вздоха. При дыхании межреберные мышцы и диафрагма периодически изменяют объем грудной клетки. Когда грудная клетка расширяется, давление воздуха в легких падает ниже атмосферного, т.е. «срабатывает» изотермический закон (р0V0 = р1V1), и вследствие образовавшегося перепада давлений происходит вдох. Другими словами, воздух идет из окружающей среды в легкие самотеком до тех пор, пока величины давления в легких и в окружающей среде не выравняются.
Выдох происходит аналогично: вследствие уменьшения объема легких давление воздуха в них становится больше, чем внешнее атмосферное, и за счет обратного перепада давлений он выходит наружу. Схематическое изображение процесса дыхания дано на рис. 1.
Важную роль в этом процессе играет плевральная полость, в которой при дыхании возникают разрежения. Если хирургическим путем открыть наружному воздуху (под нормальным атмосферным давлением) доступ в плевральное пространство, то атмосферное давление сожмет легкое, выключив его из процесса дыхания. Именно так делают при лечении легочного туберкулеза (метод пневмоторакса).
Теперь рассмотрим процесс «переработки» воздуха, поступившего в легкие. Давление воздуха складывается из парциальных давлений входящих в него газов (по закону Дальтона: рсмеси= р1+ р2+ р3+...+ рn). Как известно, свежий воздух состоит из кислорода (20,94%), углекислого газа (0,03%), азота и инертных газов (79,03%). Состав же выдыхаемого воздуха иной: кислорода — 16,3%, углекислого газа — 4%, азота и инертных газов — 79,7%. Видно, что кислорода становится меньше, а углекислого газа — больше (количество остальных газов почти не меняется). Это означает, что и парциальное давление кислорода уменьшается, а углекислого газа — растет. Стенки легочных пузырьков (альвеол) способны пропускать сквозь себя в кровь и обратно молекулы газов при наличии разности давлений газов в альвеолах и в крови. В результате после вдоха кислород из области с бо'льшим парциальным давлением движется в область с меньшим парциальным давлением, т.е. из альвеол в кровь. Углекислый же газ выводится из крови в альвеолы, после чего «переработанный» воздух выдыхается. Так работают «обычные» или, как их еще называют, биологические легкие.
Но существует еще и понятие физических легких. Это не биологический орган, а физическая система, которая функционирует подобно биологическим легким. Благодаря физическим легким дышит водяной паук серебрянка. Его тело покрыто мелким несмачиваемым пушком. Когда паук погружается в воду, к телу пристают мельчайшие пузырьки воздуха, покрывая его сплошной воздушной оболочкой. В воде эта оболочка блестит, делая паука похожим на шарик ртути. Выставляя из воды кончик брюшка, паук забирает крупный пузырек воздуха и, придерживая его задними ножками, отправляется в глубину.
Среди водных растений он натягивает нити своей паутины, «клетку» для воздушного шарика, который все больше и больше наполняется воздухом по мере совершения пауком очередных «рейсов» на поверхность. Когда воздушный домик становится достаточно просторным, паук переходит к отдыху. Он дышит воздухом своего же домика, хотя принесенного запаса кислорода в нем даже отдыхающему пауку должно было хватить всего на несколько минут. Но возможность отдыхать дает сама природа. Вернее, физические законы.
Дело в том, что в воде вокруг домика-пузырька также имеется воздух. Правда, в растворенном виде. По мере расходования кислорода в пузырьке уменьшается его парциальное давление по сравнению с давлением в воде, и растворенный в воде кислород диффундирует в пузырек. Углекислый же газ, наоборот, диффундирует из домика в воду, где его парциальное давление меньше. Конечно, этот газообмен не позволяет полностью компенсировать затраты кислорода на дыхание, но тем не менее паук получает возможность обновлять атмосферу значительно реже, минут через 30, а то и более. Если паук находится в состоянии анабиоза, то воздуха от одной ходки наверх хватает на очень длительное время.
Таким образом, физические легкие — это «приспособление природы», в котором «дышит» сам пузырек, а не паук. А последний дышит уже своими биологическими легкими, т.е. воздухом, имеющимся в пузырьке.
Перейдем к проблеме измерения рабочего объема легких, т.е. объема воздуха, вдыхаемого (или выдыхаемого) при глубоком вдохе (выдохе). Известно, что он меньше полного объема легких. Следовательно, при каждом вдохе-выдохе в легких обновляется не весь воздух. По рабочему объему легких (вернее, по отношению рабочего объема к полному) можно сделать вывод о состоянии дыхательной системы человека. Различные заболевания (например астма), курение, а также малоподвижный образ жизни приводят к уменьшению рабочего объема.
Для начала необходимо знать полный объем легких. Это задача не из простых, т.к. экспериментальным путем на живом человеке этого делать не стоит. Да и как? Реально просматривается только один способ: произвести вскрытие, извлечь легкие, наполнить водой «под завязку», после чего эту воду вылить в мензурку (или большую мерную кружку). Да и то нет гарантии, что к моменту наполнения водой легкие будут расправленными и смогут вместить воды «по максимуму».
В настоящее время полный объем легких обычно определяют расчетным путем, по формуле Дюбуа, которая устанавливает зависимость площади поверхности тела человека от его массы и роста:
S = 0,167•
где m — масса тела в [кг], L — длина тела, рост в [м]. (Разумеется, для получения в свое время этой эмпирической формулы потребовались и вскрытия.) Следует сразу обратить внимание учащихся, что эта формула — только для чисел, т.е. единицы физических величин в ней не сходятся. Далее пользуются известной зависимостью, согласно которой на 1 м2 поверхности приходится у мужчин — 2,5 л, у женщин — 2 л полного объема легких.
В качестве примера можно рассчитать полный объем легких кого-нибудь из присутствующих. Кстати, ученики обычно предлагают кандидатуру... учителя! Этим стоит воспользоваться для того, чтобы затем кто-либо из учеников рассчитал и свой объем, если вспомнит массу и рост. Это в дальнейшем, по ходу урока, пригодится. Например, при массе 75 кг и росте 176 см площадь поверхности тела юноши составляет 1,92 м2. Следовательно, полный объем легких 4,8 л.
Теперь об измерении рабочего объема легких. С ним дела обстоят проще, поэтому можно организовать достаточно интересную дискуссию о том, какой должна быть конструкция прибора для таких измерений. К настоящему времени разработано достаточно много подходящих конструкций, но, несмотря даже на принципиальные различия, все эти приборы носят общее название спирометры. Разумеется, дискуссию надо направлять в нужное русло. Диалог с учениками может получиться, к примеру, следующим.
Учитель. Итак, давайте подумаем, как измерить объем воздуха, который выдыхает человек за один раз. Причем имейте в виду, что нужно получить значение объема воздуха при нормальном атмосферном давлении.
Ученик. Выдохнуть его в полиэтиленовый пакет и измерить объем.
Учитель. Как?
Ученик. Хотя бы опустить в воду и измерить объем вытесняемой жидкости. Оболочка — тонкая, так что объем пакета с воздухом примерно равен объему одного воздуха.
Учитель. Но ведь пакет, погруженный в жидкость, будет испытывать давление жидкости. Кстати, как оно называется?
Ученик. ...Гидростатическое... Ну тогда... не погружать, а измерить как-нибудь. Линейкой...
Учитель. А что, надутый полиэтиленовый пакет имеет форму параллелепипеда или шара? Только в этих случаях достаточно было бы линейки и соответствующих формул.
Ученик. Ну тогда выдохнуть в воздушный шарик. Он-то круглый!
Учитель. Да, но только при надувании резина...
Ученик. ...натягивается...
Учитель. ...и оказывает давление на воздух. И давление воздуха будет больше атмосферного, а объем соответственно меньше. (Ученики задумываются.)
Учитель. Воздух будет испытывать давление жидкости, если только воздушный пузырь будет погружен в нее. А если не погружать?.. Просто придержать выдохнутый воздух у поверхности воды...
Ученик. Чем?
Учитель. А вот чем? Думайте.
Ученик. Каким-нибудь поплавком или перевернутым стаканчиком.