Pправ – Pлев = hg,
так что
F = hg > 0.
С учетом сказанного 2-й закон Ньютона принимает вид:
– (–v')v' = hg,
или: v'2 = hg,
откуда находим искомую скорость:
В качестве упражнения читателю предлагается решить задачу, взяв в качестве тела переменной массы некоторый участок вертикальной цепи. Видимо, проще всего выбрать некоторый нижний отрезок левого вертикального участка с фиксированным верхним звеном (но не высотой!). Тонкость будет в определении силы F: натяжение цепи Th на нижнем конце теперь, когда звено, лежащее в основании и имеющее скорость v', включается в состав тела переменной массы, равно нулю (Th = 0), а прежнее натяжение цепи Th = hg является теперь внутренней силой. Любопытно, что ответ не зависит от длины выбранного отрезка и его можно взять сколь угодно малым, достаточно рассматривать в каждый момент времени только звено, лежащее в основании цепи. Это же ясно и из предыдущего рассмотрения.
Задача 2. В качестве тела переменной массы возьмем вертикальный, падающий, участок цепи переменной длины l = h, h – высота цепи над столом. Как и в предыдущей задаче, движение одномерное, вдоль вертикальной оси y, поэтому вследствие нерастяжимости цепи все падающие звенья имеют одну и ту же скорость v, и 2-й закон Ньютона имеет прежний вид:
Оказывается, дополнительные соображения однозначно определяют закон движения, тем самым однозначно определяется левая часть последнего уравнения, что позволяет найти силу F, а затем и силу N давления цепочки на стол.
Рассмотрим эти соображения.
Во-первых, поскольку отделяющиеся от тела, упавшие на стол звенья имеют скорость v' = 0 (удар абсолютно неупругий), относительная скорость u = v' – v = –v, и 2-й закон Ньютона в данном частном случае принимает вид:
Во-вторых, как и в предыдущей задаче, m = l = h, =
. Как следствие , масса тела уменьшается вместе с высотой h, которая изменяется со скоростью v тела, v < 0. В третьих, как и в предыдущей задаче, последнее звено свободно ложится на стол, следовательно, натяжение T0 цепи на нижнем конце падающего участка равно нулю (T0 = 0). На верхнем его конце натяжение, очевидно, равно нулю, поэтому каждое звено вертикальной цепочки, за исключением упавшего последнего звена, падает свободно с ускорением . Как известно, при свободном падении с нулевой начальной скоростью текущая скорость v определяется пройденным путем s: . Для верхнего звена, а значит, и любого звена вертикального участка, при высоте h этот путь s = L – h, поэтому .Полученные данные определяют силу F, действующую на вертикальный участок цепочки, включая последнее, покоящееся, звено:
Теперь силу F нужно связать с силой давления N всей цепи на стол. Сила F складывается из силы тяжести и силы реакции стола N > 0, действующей на вертикальный участок в точке падения звеньев. По 3-му закону Ньютона N равна силе давления вертикального участка на стол в этой точке (стандартно имеется в виду величина этой силы, направленной вниз):
F = N – mg.
Но N однозначно связана с полной силой давления N: N складывается из силы давления N вертикального участка и веса P = (M – m)g свободно лежащей на столе части цепочки:
N = N + p = N + (M – m)g,
откуда N = N – (M – m)g.
Стало быть, F = N – mg = N – Mg,
откуда, подставляя известное значение F:
Окончательно :
Кажется полезным прокомментировать как сам ответ, так и отдельные моменты решения. Ответ демонстрирует интересную разрывную зависимость силы давления N цепи на стол от времени. В начальный момент времени (t = 0), когда h = L, сила давления N = 0.
Затем, с уменьшением высоты h по закону свободного падения
она квадратично растет со временем по закону . Наконец, в момент времени t=tмакс= , когда падает последнее звено цепи с максимальной скоростью и h = 0, сила давления достигает максимального значения Nмакс= 3Mg – тройной вес цепи. Но уже в следующий момент после падения и позднее, когда вся цепь свободно лежит на столе, сила давления равна просто весу цепочки: N = Mg при t > tмакс (см. рисунок).Обратим внимание еще на одну тонкость. Когда мы делали заключение о свободном падении вертикального участка цепи, мы исключали из него нижнюю точку – последнее упавшее, отделившееся, звено, имеющее нулевую скорость. Сила, действующая на тело, была только силой тяжести, Fт = – mg. Когда же мы обсуждали силу F = N – mg, то это была внешняя сила, действующая на весь вертикальный участок, включая нижнюю точку, – последнее упавшее звено. Именно его останавливает сила N реакции стола (см. опять-таки обсуждение содержания внешней силы F при выводе 2-го закона Ньютона). Мы видим, что конечный вклад
в полную силу давления N связан с последним останавливающимся звеном, передающим свой импульс столу. (Сравните это явление с давлением молекулярного газа на стенку.)
И, наконец, последнее замечание. В качестве тела переменной массы можно взять участок цепи, лежащей на столе. При таком выборе будем иметь: скорость v = 0, масса m = (L – h) и увеличивается за счет падающих на стол звеньев, их скорость
поэтому
, относительная скорость u = v' – v = v', сила F = N – mg, 2-й закон Ньютонапринимает вид: -(-v')v'=N-mg, откуда, как и раньше,
На этот раз последнее упавшее, теперь добавляющееся, звено относится к лежащей на столе части цепи. Вот такие «хитрости». Их можно избежать, а решение задачи упростить, если рассмотреть целиком всю цепь и применить 2-й закон Ньютона к движению всей цепи.