Теорема. Если в кооперативной игре существует с-ядро C и Н-М-решение R, то CÌ R.
Свойства Н-М-решений.
Н-М-решение кооперативной игры не может состоять только из одного дележа, т.к. в этом случае характеристическая функция игры несущественная.
Недостатки Н-М-решения.
1. Известны примеры кооперативных игр, которые не имеют Н-М-решений. Более того, в настоящее время не известно каких-либо критериев, позволяющих судить о наличии у кооперативных игр Н-М-решений. Тем самым заложенный в Н-М-решении принцип оптимальности не является универсально реализуемым, и область его реализуемости пока остаётся неопределён- ной.
2. Кооперативные игры, если не имеют Н-М-решения, то, как правило, более одного. Поэтому принцип оптимальности, приводящий к Н-М-решению, не является полным: он, вообще говоря, не в состоянии указать игрокам единственной системы норм распределения выигрыша.
3. Решения существенных кооперативных игр состоит более, чем из одного дележа. Таким образом, даже выбор какого-либо конкретного Н-М-решения ещё не определяет выигрыша каждого из игроков.
4. Понятие Н-М-решения отражает только в очень малой степени черты справедливости.
Перечисленные недостатки отражают положение дел в действительности: большинство экономических и социальных проблем допускает множественные решения, и эти решения не всегда поддаются непосредственному сравнению по их предпочтительности.
Перечисленные недостатки Н-М-решения коалиционных игр способствуют поискам новых подходов. Одним из таких подходов является подход Шепли, суть которого в том, что он строиться на основании аксиом, отражающих справедливость дележей.
Определение. Носителем игры с характеристической функцией u называется такая коали-ция T, что
u(S) = u(S Ç T)
для любой коалиции S.
Смысл носителя T состоит в том, что любой игрок, не принадлежащий T, является нейтральным, он не может ничего внести в коалицию и ему ничего не следует выделять из общих средств.
Определение. Пусть u – характеристическая функция кооперативной игры n игроков, p – любая перестановка множества N игроков. Через pu обозначим характеристическую функцию и та- кой игры, что для коалиции S = {i1, i2, ..., iS} будетu ({p( i1), p( i2), ..., p( iS)}) = u(S).
Содержательный смысл функции pu состоит в том, что если в игре с характеристической функцией u поменять местами игроков согласно перестановке p, то получим игру с характерис- тической функцией pu.
Аксиомы Шепли.
1о. Аксиома эффективности. Если S – любой носитель игры с характеристической функцией u, то
= u(S)Иными словами, “справедливость требует”, что при разделении общего выигрыша носителя игры ничего не выделять на долю посторонних, не принадлежащих этому носителю, равно как и ничего не взимать с них.
2о. Аксиома симметрии. Для любой перестановки p и iÎN должно выполняться
(pu) = ji (u),т.е. игроки, одинаково входящие в игру, должны “по справедливости” получать одинаковые выигрыши.
3о. Аксиома агрегации. Если есть две игры с характеристическими функциями u¢ и u¢¢, то
j i (u¢ + u¢¢) = j i (u¢) + j i (u¢¢),
т.е. ради “справедливости” необходимо считать, что при участии игроков в двух играх их выигрыши в отдельных играх должны складываться.
Определение. Вектором цен (вектором Шепли) игры с характеристической функцией u называется n-мерный вектор
j (u) = (j1(u), j2(u), ..., jn(u)),
удовлетворяющий аксиомам Шепли.
Существование вектора Шепли вытекает из следующей теоремы
Теорема. Существует единственная функция j, определённая для всех игр и удовлетворяющая аксиомам Шепли.
Определение. Характеристическая функция wS(T), определённая для любой коалиции S, называется простейшей, если
wS(T) =
Содержательно простейшая характеристическая функция описывает такое положение дел, при котором множество игроков S выигрывает единицу тогда и только тогда, когда оно содержит некоторую основную минимальную выигрывающую коалицию S.
Можно доказать, что компоненты вектора Шепли в явном виде запишутся следующим образом
где t – число элементов в T.
Вектор Шепли содержательно можно интерпретировать следующим образом: предельная величина, которую вносит i-й игрок в коалицию T, выражается как
u(T) - u(T \{i})
и считается выигрышем i-го игрока; gi (T) – это вероятность того, что i-й игрок вступит в коалицию T \{i}; ji (u) – средний выигрыш i-го игрока в такой схеме интерпретации. В том случае, когда u – простейшая,
Следовательно
,где суммирование по T распространяется на все такие выигрывающие коалиции T, что коалиция T \{i}не является выигрывающей.
Пример. Рассматривается корпорация из четырёх акционеров, имеющих акции соответственно в следующих размерах
a1 = 10, a2 = 20, a3 = 30, a4 = 40.
Любое решение утверждается акционерами, имеющими в сумме большинство акций. Это решение считается выигрышем, равным 1. Поэтому данная ситуация может рассматриваться как простая игра четырёх игроков, в которой выигрывающими коалициями являются следующие:
{2; 4}, {3; 4},
{1; 2; 3}, {1; 2; 4}, {2; 3; 4}, {1; 3; 4},
{1; 2; 3; 4}.
Найдём вектор Шепли для этой игры.
При нахождении j1 необходимо учитывать, что имеется только одна коалиция T={1;2;3}, которая выигрывает, а коалиция T \{1} = {2; 3} не выигрывает. В коалиции T имеется t = 3 игрока, поэтому
.Далее, определяем все выигрывающие коалиции, но не выигрывающие без 2-го игрока: {2; 4}, {1; 2; 3}, {2; 3; 4}. Поэтому
.Аналогично получаем, что
, .В результате получаем, что вектор Шепли равен
. При этом, если считать, что вес голоса акционера пропорционален количеству имеющихся у него акций, то получим следующий вектор голосования ,который, очевидно, отличается от вектора Шепли.
Анализ игры показывает, что компоненты 2-го и 3-го игроков равны, хотя третий игрок имеет больше акций. Это получается вследствие того, что возможности образования коалиций у 2-го и 3-го игрока одинаковые. Для 1-го и 4-го игрока ситуация естественная, отвечающая силе их капитала.