Смекни!
smekni.com

Основы астрофотометрии (стр. 2 из 3)

Человеческий глаз воспринимает излучение в интервале длин волн от 0.38 до 0.70 мкм с максимумом чувствительности на l = 0.55-0.59 мкм. Фотометрическая система, основанная на кривой спектральной чувствительности глаза, исторически была самой первой, и определяемый из прямых наблюдений блеск светила называется визуальной звездной величиной.

Следующим светоприемником стала фотографическая пластинка, воспринимающая излучение в интервале 0.36 - 0.54 мкм с максимумом на 0.42 мкм, то есть целом фотопластинка более чувствительна к синим и УФ-лучам. Блеск, определенный путем фотометрирования изображения звезды на обычной фотопластинке, или полученный при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром, называется фотографической (синей) звездной величиной.

Фотографические определения блеска имеют много преимуществ по сравнению с визуальными, главные из которых - одновременное получение блеска для многих источников и объективность (независимость от конкретного наблюдателя), а также возможность длительного хранения и последующих независимых измерений на ней. Для того, чтобы определять визуальный блеск фотографическим путем, была введена система фотовизуальных (желтых) звездных величин, которые получаются из фотометрирования специальных ортохроматических фотопластинок, снятых через желтый светофильтр. Благодаря специально подобранной фотоэмульсии этих пластинок визуальные и фотовизуальные звездные величины практически совпадают.

В 1953 г. Х.Л.Джонсон и У.У.Морган разработали принятую в качестве международной стандартной системы широко используемую в настоящее время трехцветную широкополосную электрофотометрическую UBV-систему, охватывающую длины волн от 0.30 до 0.70 мкм. В ней полоса B примерно соответствует фотографической звездной величине, а V - фотовизуальной. Система достаточно хорошо воспроизводима и легко реализуется со стеклянными светофильтрами и фотоумножителем с сурьмяно-цезиевым катодом (S 14) и кварцевым окном. Позже для расширения рабочего энергетического диапазона система UBV была продолжена в сторону ИК-диапазона, где были выделены полосы RIJHKLMN, соответствующие интервалам прозрачности земной атмосферы. Более коротковолновая область для наземных наблюдений недоступна, поскольку для волн короче 0.29 мкм земная атмосфера практически непрозрачна. Для полос расширенной системы UBV в таблице приведены средние длины волн l, полуширины (ширины кривых чувствительности на уровне половины от максимума) Dl в мкм и плотности потока для звезды 0m.0 Ф1 (в 10-14 Вт/см2/мкм) и Ф2 (в 10-24 Вт/м2/Гц). Все звездные величины после учета межзвездного поглощения считаются совпадающими для звезд спектрального класса A0V.

U B V R I J H K L M N Q
l 0.36 0.44 0.55 0.70 0.88 1.25 1.62 2.20 3.5 5.0 10.4 20.0
Dl 0.04 0.10 0.08 0.21 0.22 0.30 0.20 0.6 0.9 1.1 6.0 5.5
Ф1 435 720 392 176 83.0 34.0 3.90 0.81 0.22 0.012
Ф2 18.8 44.4 38.1 30.1 24.3 17.7 6.3 3.1 1.8 0.43

Существуют и другие фотометрические системы, которые различаются наборами эффективных длин волн l0 и полушириной соответствующих полос пропускания Dl (ширина полосы по половине интенсивности на волне l0). Фотометрические системы делятся на на широкополосные (Dl > 300 А), среднеполосные (Dl ~ 100 - 300 A) и узкополосные (Dl < 100 A).

Разность звездных величин светила, измеренных в двух спектральных диапазонах, называется его показателем цвета, или колор-индексом. В системе UBV применяются два показателя цвета: ультрафиолетовый (U-B) и сине-зеленый (B-V). Большой положительный показатель B-V у звезды свидетельствует о слабости голубого участка ее спектра по сравнению с желто-зеленым, то есть эта звезда - красная. Отрицательные значения B-V характерны для голубых звезд. Показатель цвета, присущий звездам данного спектрального класса, называется нормальным цветом, и его можно измерить у близких звезд или же звезд в областях, где межзвездное поглощение пренебрежимо мало. При наличии межзвездного поглощения измеренный показатель цвета будет отличаться от нормального, и разности измеренного и нормального цветов EU-B и EB-V (на примере системы UBV) называются избытками цвета:

EU-B = (U-B) - (U-B)0

EB-V = (B-V) - (B-V)0

Определение избытков цвета дает возможность оценить, например, межзвездное поглощение и металличность (долю тяжелых элементов) звезд.

Наконец, создаваемая источником освещенность, просуммированная по всем участкам спектра, определяет его болометрическую звездную величину. Ее непосредственное определение возможно только во внеатмосферных экспериментах с использованием болометра (интегрального приемника излучения). Болометрические абсолютные звездные величины звезд лежат в пределах от -10m до +18m. Болометрическая величина обычно определяется не из наблюдений, а через болометрическую поправку Db- разность между болометрической звездной величиной и звездной величиной в одной из фотометрических систем (обычно U, B или V). Если система не указывается, то под болометрической поправкой подразумевается разность между болометрической величиной и фотовизуальной величиной V. Болометрическая поправка является функцией эффективной температуры Тэ звезды (температуры абсолютно черного тела, с единицы поверхности которого в единицу времени излучается энергия L/(4*p*R2), где L - светимость этой звезды во всех спектральных диапазонах, а R - ее радиус) и характеризует разницу между полным излучением звезды и ее излучением в оптическом диапазоне. Условно принято, что болометрическая звездная величина звезд спектральных классов F3-F5 (Тэ = 6500-7000 K) равна их фотовизуальной величине V (Db = 0), поскольку для таких звезд наибольшая доля излучаемой энергии приходится на видимый диапазон, в то время как у более горячих она смещается в ультрафиолетовую область, у более холодных - в инфрокрасную. Для всех остальных звезд болометрическая поправка отрицательна. Для Солнца (Тэ = 5785 К) Db = -0m.08, для горячих звезд класса В0 (Тэ = 28000 K) Db ~ -2m.8, для холодных красных сверхгигантов класса М5 (Тэ = 2800 K) Db = -3m.4.

Видимый блеск небесных тел зависит не только от их светимостей, но и от расстояний до них. Для сравнения светимостей введено понятие абсолютной звездной величины - блеска, которым обладало бы светило, если бы находилось на стандартном расстоянии, равном 10 пк. Например, для Солнца M = +4m.8. Соотношение между абсолютной звездной величиной М, видимой величиной m (исправленной за межзвездное поглощение и красное смещение) и расстоянием r (в парсеках) до светила имеет вид:

M = m + 5 - 5*lg(r) (3) или для неисправленного за межзвездное поглощение видимого блеска

m - M = 5*lg(r) - 5 + A(r) (4) где A(r) - межзвездное поглощение в данном направлении до расстояния r в том же спектральном интервале, к которому относятся m и M. Разность m - M называется модулем расстояния, который в отсутствии межзвездного поглощения зависит только от расстояния.

Для внегалактических объектов абсолютная звездная величина определяется аналогичным образом, и галактики имеют абсолютные величины от -24m до -6m. Для нашей Галактики М = -21m. Если бы все звезды Галактики были сосредоточены в ее ядре, с расстояния расстоянии 10 кпк, такое ядро имело бы блеск -6m. Однако на самом деле наибольший вклад в суммарную светимость Галактики вносят звезды, расположенные в галактическом ядре и диске, то есть в областях, богатых газово-пылевой материей. Полощение света в последней и определяет видимую невысокую яркость ночного неба.

В практическом плане формулы 1-4 реализованы в виде калькулятора PHOT на сайте проекта RTT-150, который позволяет вычислить любой из параметров m, M, r или A(r) по остальным.

Для объектов Солнечной системы, светящихся отраженным солнечным излучением (планеты, астероиды, кометы), за абсолютную величину принимается блеск, который имело бы данное небесное тело, если бы находилось на расстоянии 1 а.е. от Земли и 1 а.е. от Солнца (поскольку освещенность поверхности самого тела обратно пропорциональна квадрату его расстояния от Солнца) в фазе, равной единице. Абсолютная звездная величина такого несамосветящегося объекта определяется его размером и отражательной способностью его поверхности. Отношение потока излучения, рассеянного поверхностью по всем направлениям, к падающему на нее потоку, называется альбедо. В планетной фотометрии применяют понятие геометрического альбедо Аг:

Аг = E0/Eл, где E0 - освещенность на Земле, создаваемая небесным телом в полной фазе, а Eл - освещенность, которую создал бы на Земле плоский ламбертовский абсолютно белый экран того же размера, что и небесное тело, помещенный на место этого тела и ориентированный перпендикулярно лучу зрения (экран Ламберта рассеивает падающее излучение одинаково во всех направлениях). Поскольку планеты имеют форму, близкую к сферической, то используется также сферическое альбедо

Ас = Аг*Q, где Q <=1 - фазовый интеграл, учитывающий изменение видимой с Земли освещенной площади небесного тела, то есть фазы.

В отношении комет фотометрический закон изменения блеска (обратно пропорционально квадратам расстояния от Земли и Солнца) применим только к ядрам, и то не всегда, поскольку может происходить как изменение их альбедо, так и изменение размеров (например, неоднократно наблюдавшееся деление ядер, а также потеря вещества у периодических комет, значительно приближающихся к Солнцу и вследствии этого становящихся с каждым оборотом все слабее и слабее). В целом же по мере приближения к Солнцу нагрев ядра приводит к резкому усилению интенсивности выделения газов и пыли из последнего. Поэтому за счет увеличения отражающей площади суммарный блеск комет нарастает гораздо быстрее, чем того требует закон E ~ 1/r2. Обычно изменение блеска головы кометы аппроксимируется законом E ~ 1/rn, где r - расстояние от Солнца, а показатель степени n для большинства комет близок к 4, но у отдельных комет наблюдаются значительные отклонения от этого закона. Кроме того, на связанное с изменением r плавное изменение блеска часто накладываются вспышки, вызванные взрывным выбросом вещества из кометных ядер.