Смекни!
smekni.com

Симметрия и принципы инвариантности в физике (стр. 4 из 5)

Казалось бы, столь разные взаимодействия невозможно объединить в единое поле. Однако С. Вайнберг, Ш. Глэшоу и А. Салам показали, что это не так. Они предположили, что локальная калибровочная симметрия типа SU(2) x U(1) единого электрослабого взаимодействия в прошлом оказалась спонтанно нарушенной при остывании горячей Вселенной после Большого взрыва. Спонтанное нарушение симметрии SU(2) x U(1) предположительно произошло в результате фазового перехода в вакууме при температуре T10 15K. Следствием этого нарушения и стало разделение единого взаимодействия на слабое и электромагнитное. Математически это выражается в появлении трех массивных частиц - переносчиков слабого взаимодействия W +,W -,Z o и одной безмассовой - фотона , переносящего электромагнитное взаимодействие (все со спином 1), а также одной бесспиновой частицы Хиггса (последняя названа по имени британского физика, открывшего механизм нарушения симметрии).

Теория С. Вайнберга и А. Салама предсказала следующие массы W-частиц - 82 ГэВ и Zo- частицы - 93 ГэВ. В 1983 г. в Женевском объединенном институте ядерных исследований такие частицы зафиксированы и измерены их массы: m W =(81 2) ГэВ, m Z =(94 2) ГэВ, что хорошо согласуется с теоретическими предсказаниями. Кроме того, на основе этой теории были объяснены так называемые процессы с нейтральными токами (типа рассеяния нейтрино на нуклонах). Однако частицы Хиггса до сих пор не обнаружены, что вызывает чувство некоторой неудовлетворенности. Возможно, их массы слишком велики (теория пока не может предсказать их массы), чтобы их можно было создать в современных ускорителях частиц.

5. Симметрия и законы сохранения

Существует глубокая связь между симметрией и законами сохранения. Еще Г.Гамель и Э.Нетер показали, что трансляционная симметрия приводит для замкнутой системы к закону сохранения полного импульса, а вращательная симметрия - к закону сохранения полного момента количества движения. Позднее Э.Нетер установила, что каждому виду симметрии отвечает свой закон сохранения. Так, из инвариантности уравнений механики относительно сдвигов во времени вытекает закон сохранения энергии, из калибровочной инвариантности уравнений электродинамики - закон сохранения электрического заряда. Сформулированы законы сохранения и для ряда других физических величин. Некоторые из них выполняются для всех взаимодействий, другие - только для определенного вида взаимодействий. К первым можно отнести закон сохранения барионного заряда (применимость которого ко всем взаимодействиям, впрочем, подвергается сомнению). Ко вторым относятся, например, законы сохранения странности, изоспина, которые строго выполняются для процессов с сильным взаимодействием, но нарушаются для процессов со слабым взаимодействием. Выше мы упоминали об инверсионной симметрии. Какой же закон сохранения отвечает этой симметрии? Если потребовать, чтобы волновые функции двух состояний (x, y, z, t) и (-x, -y, -z, t) , отличающиеся инверсионным преобразованием I, были физически равноценны, то  и I могут отличаться только фазовым множителем:

I =exp(i )  .

Отсюда, аналогично выводу (4), получаем

I =  ,

т.е. волновая функция должна быть либо четной, либо нечетной. Четность состояния сохраняется с течением времени 12 . Она не является формальной величиной (как может показаться на первый взгляд), так как проявляется, например, в запрете процессов с изменением четности, если взаимодействия, ответственные за эти процессы, инвариантны относительно инверсии. Четность сохраняется для сильных и электромагнитных взаимодействий, но, как уже отмечалось выше, инверсионная инвариантность, а следовательно, и закон сохранения четности отсутствуют для слабых взаимодействий. Выдающийся российский физик-теоретик Лев Ландау применил операцию комбинированной инверсии (инверсия плюс замена частиц на античастицы) для формулировки закона сохранения комбинированной четности. Этот закон выполняется для более широкого круга явлений, однако, Д.Кронин и В.Фитч с сотрудниками (1964) установили, что и этот закон сохранения нарушается при редких распадах K-мезонов. Вместе с тем не подвергается сомнению так называемая CPT-теорема, т.е. инвариантность взаимодействий при комбинированной инверсии и обращении времени.

6. Симметрия и перспективы объединения фундаментальных взаимодействий

Выше уже говорилось о роли симметрии в создании единой теории электрослабых взаимодействий. Ш.Глэшоу и Х.Джорджи (1974) сделали попытку объединения электромагнитных, слабых и сильных взаимодействий (так называемое Великое объединение). В качестве группы симметрии они рассмотрели наименьшую простую группу SU(3), включающую в себя как SU(3), так и SU(2) x U(1). В качестве пяти фундаментальных состояний в этой теории выступают три кварка одного аромата, но разного цвета и два лептона (все одного поколения). В этом подходе нет принципиального различия между кварками и лептонами (предполагается, что различие связано со спонтанным нарушением симметрии). Отметим, что нарушение симметрии и разделение сильных и электрослабых взаимодействий при остывании горячей Вселенной должны были произойти, по оценкам, при температурах T 10 27K. Эта теория (и ее разновидности) позволяет объяснить некоторые экспериментальные данные, но ее основной результат - нестабильность протона - до сих пор не подтвержден. Интересным и важным результатом теории является невыполнение закона сохранения барионного заряда. Этим можно объяснить преобладание вещества над антивеществом в обозримой части Вселенной.

Таким образом, развитие физики частиц высоких энергий приводит к выводу о том, что с ростом энергии взаимодействующих частиц симметрия фундаментальных взаимодействий повышается, что приводит к их объединению, однако энергии, необходимые для такого объединения, чрезвычайно велики (10 14-10 15ГэВ). Отсюда родилась гипотеза о том, что в первые мгновения после Большого взрыва законы природы обладали очень высокой степенью динамической симметрии: возможно, три (а может быть, и все четыре) вида фундаментальных взаимодействий были объединены в одно единое взаимодействие. Именно на такое объединение нацелены теории суперсимметрии и супергравитации. Суперсимметрия была впервые введена российскими учеными Ю.А.Гольфандом и Е.П.Лихтманом, а затем - Дж.Вессом и Б.Зумино.

Суперсимметрия связывает воедино поля и частицы с разной статистикой (фермионы и бозоны). Кванты входящих в одно суперполе фермионных и бозонных полей называют суперпартнерами. Отличительная особенность преобразований суперсимметрии состоит в том, что они преобразуют не только внутренние характеристики частиц, но и пространственно-временные координаты. Суперсимметрия, таким образом, объединяет геометрическую и внутреннюю симметрию, что придает ей особую красоту. Правда, на настоящей стадии развития Вселенной суперсимметрия могла бы проявляться только как спонтанно-нарушенная симметрия, что приводило бы к существенному различию масс частиц и их суперпартнеров (чем и объясняется отсутствие экспериментальных доказательств существования последних). Энергии, необходимые для создания “счастиц” (суперчастиц), составляют величину порядка 1000 ГэВ. Создание нового поколения ускорителей частиц должно помочь их обнаружению.

Идеи суперсимметрии интенсивно развиваются. С ними связаны, в частности, надежды на полное сокращение расходимостей в квантовой теории поля, являющихся камнем преткновения обычных теорий. Если преобразованиям суперсимметрии придать локальный характер, то получится расширение общей теории относительности, называемое супергравитацией. Супергравитация ставит целью объединение всех четырех фундаментальных взаимодействий. Однако теории суперсимметрии и супергравитации еще далеки от своего завершения.

Заключение

Принципы симметрии вносят существенную степень детерминизма, упорядоченности в вероятностное поведение квантовых систем. Они как бы противодействуют хаосу микромира, на них можно опираться при исследовании и теоретическом описании последнего.

Принципы симметрии не только помогают классификации квантовых состояний, установлению законов сохранения и правил запрета, но и обладают эвристической ценностью. С их помощью создаются новые теории, с одной стороны, описывающие явления микромира, а с другой - имеющие важные следствия для космологии. Развитие квантовой теории поля и частиц, как видно из изложенного, происходит по линии повышения симметрии, на которую опирается теория. Группа симметрии в теории электромагнитного поля U(1) является подгруппой группы симметрии электрослабых взаимодействий SU(2) x U(1), которая в свою очередь является подгруппой группы симметрии Великого объединения SU(3) x SU(2) x U(1) и т.д. Можно привести следующую цепочку подгрупповых связей:

E8 x E8⊃E 6⊃ SU(5) ⊃SU(3) x SU(2) x U(1) ⊃SU(2) x U(1) ⊃U(1) .

Первые две используют в теории суперструн и теориях с числом пространственных измерений более трех, об остальных говорилось выше. Таким образом, теоретики, обращаясь к начальным стадиям развития Вселенной, рассматривают все более симметричные варианты квантовой теории поля, однако каждый свой шаг им приходится сопровождать предположением о спонтанном нарушении этой симметрии в развивающемся мире. Иначе говоря, по мере остывания Вселенной, возникшей, вероятно, с очень высокой степенью симметрии, происходило быстрое ее понижение с переходом высших типов в скрытую форму. Причины этого явления остаются неясными. Указывает ли это на несовершенство самого мира или на несовершенство наших знаний о мире? На этот вопрос наука ответа пока не дает.