Смекни!
smekni.com

Исследование решений одной системы интегро-дифференциальных уравнений, возникающей в моделях динамики популяций (стр. 2 из 2)

Для доказательства теоремы 3 строится оценка на решение

, где
, функция w(t) такова, что
. Эти неравенства будут выполнены, если
, где
,
при
при
. Матрица (I - A1(a) B) непрерывно зависит от a и
(поэлементно) при
. Так как Q является невырожденной М - матрицей, то найдется a = a0 >0 такой, что (I - A1(a0) B) также будет невырожденной М - матрицей. Используя свойства невырожденных М - матриц, можно показать, что существуют
и
такие, что выполняется неравенство
. В итоге получаем, что справедливы оценки на решение
.

3. Заключение

Установленные выше результаты указывают на корректность применения представленной модели в целях описания динамики численности популяций. Это связано с тем, что решения модели обладают такими важными свойствами, как существование, единственность, неотрицательность и ограниченность, которые соответствуют смыслу моделируемых процессов.

Важным следствием теоремы 3 являются достаточные условия, при которых популяция вырождается, т.е. ее численность x(t) такова, что

при
. Предположение H) задает ограничения на интенсивности процессов рождения и гибели особей, тогда как условие f(0) = 0 означает, что нет внешних источников поступления новых особей. Заметим, в частности, что предположение H) и условие f(0) = 0 выполняются для линейных процессов рождения и гибели особей. В нелинейном случае этому предположению и условию удовлетворяют f(x) и
, заданные в виде некоторых многочленов, рациональных функций либо функций с непрерывными частными производными. Функции такого вида широко используются в моделях биологических процессов, см., например, [5,6].

Нетрудно показать, что матрица Q будет невырожденной М - матрицей для малых

или при достаточно малых ненулевых элементах матрицы B. Если в условиях теоремы 3 D = Rm+, то экспоненциальная оценка на решение x(t) справедлива при любом начальном значении x(0). Если же D = D0, то эта оценка выполняется для x(0), лежащих в некоторой окрестности точки x = 0. В обоих случаях конкретный вид начального распределения особей по возрасту
не влияет на экспоненциальную оценку (вектор
зависит только от значений x(0)). В рамках принятых предположений можно сделать следующий вывод: если в некоторых популяциях особи являются короткоживущими или интенсивности процесса рождения особей достаточно малы, то такие популяции обязательно вырождаются, причем независимо от начального распределения особей по возрасту.

В завершение рассмотрим пример. Одной из классических моделей динамики популяций является так называемая логистическая модель или модель Ферхюльста, которая описывается дифференциальным уравнением

с начальным условием

, где
, см., например, [5, c. 14]. Если учитывать ограниченность времени жизни особей, то в соответствии с (1) следует рассмотреть уравнение

с начальным условием (2). Здесь в качестве множества D можно рассматривать произвольный отрезок [0, d],

. Пусть
. Из теоремы 3 следует, что решение x(t) данного интегро-дифференциального уравнения таково, что
при
для любых начальных значений x(0). Можно показать, что этот результат справедлив и для
. Неравенства
задают на плоскости
область параметров, при которых популяция вырождается. Кроме того, можно показать, что для
решение
при
, независимо от значений x(0), где x* - единственный положительный корень уравнения
С ростом t решение x(t) приближается к x* либо монотонно, либо с затухающими колебаниями. Отметим, что решение логистической модели таких колебаний не имеет.

В заключение укажем, что система уравнений (1) с начальным условием (2) является обобщением некоторых из моделей, рассмотренных в работе [7].

Список литературы

Перцев Н.В. Применение одного дифференциального уравнения с последействием в моделях динамики популяций // Фундаментальная и прикладная математика / Ред. А.К. Гуц. Омск, 1994. С.119 - 129.

Красносельский М.А. и др. Приближенное решение операторных уравнений. М.: Наука, 1969.

Berman A., Plemmous R.J. Nonnegative Matrices in the Mathematical Sciences. New York, Academic Press, 1979.

Беллман Р. Введение в теорию матриц. М.: Наука, 1976.

Свирежев Ю.М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. М.: Наука, 1987.

Марри Дж. Нелинейные дифференциальные уравнения в биологии. Лекции о моделях. М.: Мир, 1983.

Cooke K., Yorke A. Some equations Modelling Growth Processes and Gonorhea Epidemics // Math. Biosci., 1973. V.16. P.75 - 101.