Для доказательства теоремы 3 строится оценка на решение
, где , функция w(t) такова, что . Эти неравенства будут выполнены, если , где , при при . Матрица (I - A1(a) B) непрерывно зависит от a и (поэлементно) при . Так как Q является невырожденной М - матрицей, то найдется a = a0 >0 такой, что (I - A1(a0) B) также будет невырожденной М - матрицей. Используя свойства невырожденных М - матриц, можно показать, что существуют и такие, что выполняется неравенство . В итоге получаем, что справедливы оценки на решение .3. Заключение
Установленные выше результаты указывают на корректность применения представленной модели в целях описания динамики численности популяций. Это связано с тем, что решения модели обладают такими важными свойствами, как существование, единственность, неотрицательность и ограниченность, которые соответствуют смыслу моделируемых процессов.
Важным следствием теоремы 3 являются достаточные условия, при которых популяция вырождается, т.е. ее численность x(t) такова, что
при . Предположение H) задает ограничения на интенсивности процессов рождения и гибели особей, тогда как условие f(0) = 0 означает, что нет внешних источников поступления новых особей. Заметим, в частности, что предположение H) и условие f(0) = 0 выполняются для линейных процессов рождения и гибели особей. В нелинейном случае этому предположению и условию удовлетворяют f(x) и , заданные в виде некоторых многочленов, рациональных функций либо функций с непрерывными частными производными. Функции такого вида широко используются в моделях биологических процессов, см., например, [5,6].Нетрудно показать, что матрица Q будет невырожденной М - матрицей для малых
или при достаточно малых ненулевых элементах матрицы B. Если в условиях теоремы 3 D = Rm+, то экспоненциальная оценка на решение x(t) справедлива при любом начальном значении x(0). Если же D = D0, то эта оценка выполняется для x(0), лежащих в некоторой окрестности точки x = 0. В обоих случаях конкретный вид начального распределения особей по возрасту не влияет на экспоненциальную оценку (вектор зависит только от значений x(0)). В рамках принятых предположений можно сделать следующий вывод: если в некоторых популяциях особи являются короткоживущими или интенсивности процесса рождения особей достаточно малы, то такие популяции обязательно вырождаются, причем независимо от начального распределения особей по возрасту.В завершение рассмотрим пример. Одной из классических моделей динамики популяций является так называемая логистическая модель или модель Ферхюльста, которая описывается дифференциальным уравнением
с начальным условием
, где , см., например, [5, c. 14]. Если учитывать ограниченность времени жизни особей, то в соответствии с (1) следует рассмотреть уравнениес начальным условием (2). Здесь в качестве множества D можно рассматривать произвольный отрезок [0, d],
. Пусть . Из теоремы 3 следует, что решение x(t) данного интегро-дифференциального уравнения таково, что при для любых начальных значений x(0). Можно показать, что этот результат справедлив и для . Неравенства задают на плоскости область параметров, при которых популяция вырождается. Кроме того, можно показать, что для решение при , независимо от значений x(0), где x* - единственный положительный корень уравнения С ростом t решение x(t) приближается к x* либо монотонно, либо с затухающими колебаниями. Отметим, что решение логистической модели таких колебаний не имеет.В заключение укажем, что система уравнений (1) с начальным условием (2) является обобщением некоторых из моделей, рассмотренных в работе [7].
Список литературы
Перцев Н.В. Применение одного дифференциального уравнения с последействием в моделях динамики популяций // Фундаментальная и прикладная математика / Ред. А.К. Гуц. Омск, 1994. С.119 - 129.
Красносельский М.А. и др. Приближенное решение операторных уравнений. М.: Наука, 1969.
Berman A., Plemmous R.J. Nonnegative Matrices in the Mathematical Sciences. New York, Academic Press, 1979.
Беллман Р. Введение в теорию матриц. М.: Наука, 1976.
Свирежев Ю.М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. М.: Наука, 1987.
Марри Дж. Нелинейные дифференциальные уравнения в биологии. Лекции о моделях. М.: Мир, 1983.
Cooke K., Yorke A. Some equations Modelling Growth Processes and Gonorhea Epidemics // Math. Biosci., 1973. V.16. P.75 - 101.