Теорема 2. Если Y - замкнутое инвариантное подпространство
, то , .Доказательство. Пусть n>1 и тройка (p,q,r) такая, что
. Так как Y инвариантно и коммутирует с Sp(n), то - нетривиальное инвариантное подпространство P(p,q,r). Значит, Пусть и Y1 - ортогональное дополнение к Y0 в Y. Тогда Y0 инвариантно как ядро оператора, коммутирующего с Sp(n), значит Y1 также инвариантно. Более того, - изоморфизм, обратный к которому обозначимВыберем другую тройку (p',q',r') и рассмотрим отображение
Оно коммутирует с Sp(n) и переводит P(p,q,r) в P(p',q',r'). Значит, по предложению 3, для всех (p',q',r'), таких чтоТогда Y1 - подпространство
. Рассмотрим и содержащее его минимальное инвариантное пространство, оно совпадает с Y1.Пользуясь теоремой 1, получаем нужный результат. Случай n=1 доказывается аналогично.
Пусть далее X обозначает одно из пространств
, и C(S4n-1). Как следствие теоремы об общем виде линейного ограниченного функционала на получаетсяПредложение 4. При n>1 для всех троек (p,q,r) и всех точек z на S4n-1 найдется полином Kz из P(p,q,r) такой, что для любой функции f из
Для всех пар (p,q) и всех точек z на S3 найдется полином Kz из H(p,q) такой, что для любой функции f из
Следствие. Операторы
и продолжаются до непрерывных операторов наДалее потребуются следующие две леммы, которые приводятся без доказательства.
Лемма 1. Если Y - замкнутое инвариантное подпространство X, то
плотно в Y.Лемма 2. Если Y инвариантное подпространство C(S4n-1), непрерывная функция g не лежит в равномерном замыкании Y, то g не лежит и в L2-замыкании Y.
Докажем основной результат данной работы.
Теорема 3. Если Y - инвариантное подпространство X и
- из теоремы 2, то .Доказательство. По следствию из предложения 4
и определены на . Пусть - L2-замыкание Так как -замкнуто, то плотно в Y по лемме 1 и равномерно замкнуто. По лемме 2 Так как и X-непрерывны и L2-непрерывны, то иПоэтому по теореме 2
Так как лежит в C(S4n-1), то, применяя лемму 2, получаем: = равномерное замыканиеОтсюда и из того, что
X-плотно в Y и вытекает утверждение теоремы.В заключение несколько слов об инвариантных алгебрах на кватернионных сферах. Унитарно-инвариантные алгебры были описаны в [4], их пространства максимальных идеалов были найдены в работе [5]. В симплектическом случае дело существенно усложняется из-за кратности представлений в пространствах однородных полиномов. Однозначного разложения на неприводимые компоненты не получается, и, как следствие, мера Хаара не будет мультипликативной. Уже при n=1 возникает большое число инвариантных алгебр, не инвариантных относительно действия унитарной группы.
Список литературы
Виленкин Н. Я. Специальные функции и теория представлений групп. М.: Наука, 1965.
Гото М., Гроссханс Ф. Полупростые алгебры Ли. М.: Мир, 1981.
Наймарк М. А. Теория представлений групп. М.: Наука, 1976.
Рудин У. Теория функций в единичном шаре из Cn. М.: Мир, 1984.
Kane J. Maximal ideal spaces of U-algebras // Illinois J. Math. V.27. 1983. N.1. P.1-13.