И.А. Латыпов, Омский государственный университет, кафедра математического анализа,
Кватернионную сферу S4n-1 естественно рассматривать как однородное пространство группы Sp(n), действие задается левыми сдвигами. В связи с этим возникает задача описания замкнутых Sp(n)-инвариантных подпространств L p при
1. Предварительные сведения из теории алгебр Ли.
Группу Sp(n,C) зададим как множество матриц, удовлетворяющих условию StJS=J, где
Подалгебра диагональных матриц будет картановской,
где
2. Представления алгебры Ли sp(n,C) в пространствах H(p,q).
Введем обозначения: Ok- пространство однородных полиномов степени однородности k, O(p,q) - пространство однородных полиномов степени однородности p и q по переменным z и
Рассмотрим сначала алгебру u(n). Выберем ее базис над R в виде
Пусть
Задавая в u(n)C базис
Применим полученные формулы для представления алгебры sp(n,C)=sp(n)C:
где wi=zn+i.
H(p,q) - неприводимые компоненты представления u(n) и u(n)C, см. [4]. Значит, неприводимыми компонентами представления sp(n) и sp(n,C) будут некоторые подпространства H(p,q). Введем операторы
Предложение 1. Операторы L1 и L2 являются сплетающими для некоторых пар неприводимых представлений.
Найдем теперь старшие векторы из H(p,q), соответствующие неприводимым представлениям sp(n,C), они должны зануляться положительными операторами Dbij для всех i и j и Daij при i>j. Прямой проверкой получается
Предложение 2. При n>1 многочлен
Теорема 1. При n=1 H(p,q) неприводимо, а при n>1
Доказательство . Размерность H(p,q) равна
идею доказательства см. в [1].
Если n=1, вектор
Пусть n>1. Осталось теперь показать, что
Эту формулу можно доказать по индукции, индуктивный переход делается от пары (p,q) к паре (p+1,q-1), а
Обозначим через
Следствие 1. Пространство
Следствие 2. Справедливы утверждения: a) В P(p1,q1,r1) и P(p2,q2,r2) при n>1 реализуются эквивалентные представления тогда и только тогда, когда p1+q1=p2+q2 и r1=r2.
b) При n=1 в H(p1,q2) и H(p2,q2) реализуются эквивалентные представления тогда и только тогда, когда p1+q1=p2+q2.
Пусть Ws,r и Ws - пространства линейных комбинаций векторов
Следствие 3. Ws,r и Ws - пространства старших векторов неприводимых представлений со старшим весом
Более подробные сведения из теории представлений можно найти, например, в [3].
3. Инвариантные пространства функций на S4n-1.
Пространство Y на сфере S4n-1 назовем инвариантным, если для всех f из Y и всех g из Sp(n) f*g лежит в Y. Неприводимость представления группы Ли Sp(n) эквивалентна неприводимости представления комплексификации ее алгебры Ли sp(n,C), поэтому пространства P(p,q,r) и H(p,q) при n=1 инвариантны.
Если Y - инвариантное замкнутое подпространство
Когда в пространствах V и W реализуются неприводимые представления, пространство сплетающих операторов из V в W либо одномерно (если представления эквивалентны), либо пусто. Отсюда, из следствия 2 теоремы 1 и предложения 1 вытекает
Предложение 3. Пусть n>1 и линейное отображение
1) если
2) если r1=r2 и p1+q1=p2+q2, то найдется константа C, такая что при
Обозначим через