Результаты расчетов
Ниже приведены некоторые результаты расчетов для процесса электроосаждения меди в ЭХС с плоско-параллельными электродами в растворе 0,1 M CuSO4. Значения используемых констант приняты следующими: F=96485,31 Кл/моль; R=8,31451 Дж/(К×моль); n=2; подвижности ионов ua=7,1´10-8, uk=4,6´10-8×м2/(В×с). Числа переноса определены по формуле fe=ue/(ua+uk), e=a, k, удельная электропроводность электролита s=Fnc°(ua+uk); коэффициенты диффузии ионов De=ueRT/nF [16, 17]. Здесь индекс e принимает значение a для анионов и k - для катионов. Значения остальных параметров указаны в подрисуночных подписях.
На рис. 1 представлены зависимости плотности тока на аноде и катоде от поляризации при различных концентрациях ионов c° в электролите. Из рисунка видно, что плотность тока растет пропорционально увеличению средней концентрации. При этом максимальное значение плотности тока определяется предельным катодным током, который достигается при нулевой концентрации ионов на катоде. Таким образом, дальнейшее увеличение напряжения не может привести к росту плотности тока электроосаждения.
На рис. 2 представлены зависимости плотности тока от поляризации при различных температурах электролита. Из рисунка следует, что изменение температуры не оказывает значительного влияния на картину токораспределения, хотя и наблюдается некоторое увеличение предельного катодного тока с ростом температуры. Таким образом, с увеличением средней температуры электролита максимальный ток электроосаждения может быть несколько увеличен.
Рис. 3 иллюстрирует влияние гидродинамического режима электролита на зависимость концентрации ионов на электродах от поляризации.
Из рисунка видно, что с уменьшением толщины диффузионного слоя на электродах (т.е. с увеличением интенсивности перемешивания электролита) нулевая концентрация на катоде наступает при большей поляризации. Следовательно, с увеличением интенсивности перемешивания электролита растет предельный ток электроосаждения.
Влияние межэлектродного расстояния на токораспределение отражено на рис. 4. Из рисунка видно, что напряжение, при котором достигается предельный ток, растет с увеличением расстояния между электродами.
Рис. 1. Зависимость анодной (а) и катодной (б) плотности тока от поляризации при L=0,1 м, dd=10-4 м, T=25°C, и с0, равных, моль/л: 1 - 0,01; 2 – 0,02; 3 – 0,03; 4 – 0,04; 5 – 0,05.
Рис. 2. Зависимость анодной (а) и катодной (б) плотности тока от поляризации при L=0,1 м, dd=10-4 м, с0=0,1 моль/л и T, равных, °C: 1 – 20; 2 – 40; 3 – 60.
Рис. 3. Зависимость концентрации на аноде (а) и катоде (б) от поляризации при L=0,1 м, T=25°C, и с0=0,1 моль/л и ddx10-4, равных, м: 1 – 16; 2 – 8,3; 3 – 4,4; 4 – 2; 5 – 1.
Таким образом, удаление электродов друг от друга, при прочих равных условиях, влечет за собой увеличение приложенного напряжения и, следовательно, расхода электроэнергии. На рис. 5 представлены зависимости электродной поляризации от приложенного напряжения при различных значениях концентрации катионов в электролите. Из рисунка видно, что с ростом концентрации ионов в электролите поляризация увеличивается, однако напряжение предельного тока остается постоянным. Следовательно, предельный ток осаждения увеличивается с ростом концентрации ионов в электролите.
Рис. 4. Зависимость анодной (а) и катодной (б) поляризации от напряжения при dd=10-4 м, T=25°C, и с0=0,1 моль/л и L, равных, м: 1 - 0,1; 2 – 0,2; 3 – 0,3; 4 – 0,4; 5 – 0,5.
Рис. 5. Зависимость анодной (а) и катодной (б) поляризации от напряжения при L=0,1 м, dd=10-4 м, T=25°C, и с0, равных, моль/л: 1 - 0,01; 2 - 0,02; 3 - 0,03; 4 - 0,04; 5 - 0,05.
Анализ результатов показывает, что при высоких плотностях тока диффузионные ограничения играют решающую роль в механизме электроосаждения.
Заключение
В приведенных примерах напряжение
изменялось с шагом 0,01 В. При этом процесс a)-g) сходился за 3-4 итерации при e=10-16. Перенапряжение в пункте b) определялось за 2-3 итерации с точностью e=10-16. В качестве начального значения для плотности тока использовалось значение, полученное на предыдущем шаге.Работа выполнена при поддержке Государственной программы "Интеграция", проект № 571, руководитель - профессор С.И.Спивак
Список литературы
Антропов Л.И. Теоретическая электрохимия. М.: Высшая школа, 1984. 519 с.
Багоцкий В.С. Основы электрохимии. М.: Химия, 1988. 400 с.
Гнусин Н.П., Поддубный Н.П., Маслий А.И. Основы теории расчета и моделирования электрических полей в электролитах. Новосибирск, 1972. 276 с.
Иванов В.Т., Гусев В.Г., Фокин А.Н. Оптимизация электрических полей, контроль и автоматизация гальванообработки. М.: Машиностроение, 1986. 213 с.
Болотнов А.М., Иванов В.Т. Численное моделирование электрических полей анодной защиты некоторых электрохимических систем // Электрохимия. 1996. Т. 32, № 6. С. 694-697.
Болотнов А.М. Расчет электрического поля в многоэлементной электрохимической системе с нелинейно-поляризующимися электродами // Вестник Башкирского университета. 1998. ¹ 1(I). C. 12-15.
Bolotnow A. Algorytmy obliczen parametrow ochrony urzadzen technologicznych przed korozja elektrochemiczna // XII Miedzynarodowa konferencja naukowo-techniczna. Bezpieczenstwo elektryczne. T. 1. Wroclaw, 1999. S. 461-468.
Ньюмен Дж. Электрохимические системы. Пер. с англ. М.: Мир, 1977. 463 с.
Галюс З. Теоретические основы электрохимического анализа. М.: Мир, 1974.
Дамаскин Б.Б., Петрий О.А. Введение в электрохимическую кинетику. М.: Высшая школа, 1983. 400 с.
Ротинян А.Л., Тихонов К.И., Шошина И.А. Теоретическая электрохимия. Л.: Химия, 1981. 423 с.
Соболев С.А. Уравнения математической физики. М.: Наука, 1992. 431 с.
Ильин В.П. Численные методы решения задач электрофизики. М.: Наука, 1985. 334 с.
Соболев С.А., Васкевич В.Л. Кубатурные формулы. Новосибирск: Изд-во ИМ СО РАН, 1996. 483 с.
Бенерджи П., Баттерфилд Р. Методы граничных элементов в прикладных науках. М.: Мир, 1984. 490 с.
Скорчеллетти В.В. Теоретическая электрохимия. Л.: Химия, 1974. 567 с.
Физические величины. Справочник /Под ред. И.С.Григорьева, Е.З.Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.