Смекни!
smekni.com

Расчет стационарного токораспределения в условиях смешанной кинетики (стр. 1 из 2)

Болотнов А.М.

Рассматривается математическая модель стационарного электрического поля в электрохимической системе с учетом омического падения потенциала в электролите и концентрационных ограничений в приэлектродных диффузионных слоях. Предлагается итерационный метод решения задачи. Результатами расчетов являются распределения плотности тока, потенциала и концентрации металлоопределяющих ионов на границах электродов. Анализируется влияние некоторых параметров на процессы электроосаждения в электролите меднения с учетом смешанной кинетики.

Введение

Известно, что прохождение электрического тока в электрохимических системах (ЭХС) сопровождается омическим падением потенциала в объеме электролита и поляризацией электродов, которая складывается из концентрационного и поверхностного перенапряжения [1]. В гальваническом производстве процесс электроосаждения металла при высоких плотностях тока сопровождается концентрационными ограничениями, следствием чего является наличие предельного тока на катоде [2].

Если для исследуемого режима имеются экспериментальные вольтамперные характеристики (поляризационные кривые), то граничные условия в математической модели могут быть построены на основе имеющихся поляризационных кривых. При этом используется, как правило, кусочно-линейная аппроксимация данных экспериментальных зависимостей [3, 4]. Математические мо­дели и алгоритмы численных расчетов электрических полей в ЭХС различной геометрии на основе экспериментальных данных разрабатывались в [5-7].

В данной работе рассматривается стационарный процесс электроосаждения металла в разбавленном водном растворе элек­тролита. В объеме электролита, за исключением диффузионных приэлектродных слоев, предполагается выполнение закона Ома для плотности тока и уравнения Лапласа - для потенциала [8]. Перенос ионов в электролите происходит под действием конвекции и миграции, в приэлектродных слоях - под действием диффузии и миграции. Полная поляризация электродов складывается из концентрационного перенапряжения, связанного с диффузионными ограничениями, и поверхностного перенапряжения, связанного с гетерогенной электродной реакцией [9-11].

Раздельный учет концентрационного и поверхностного перенапряжений дает возможность оценить вклад каждого из них в общую поляризацию электродов при различных режимах электроосаждения.

Математическая модель

Рассматривается модель стационарного поля электрического тока в области W с границей S=ÈSe,

=WÈS, где индекс
принимает значение
на границах анодов,
- катодов и
- изоляторов. Распределение потенциала j
, плотности тока j
и концентрации металлообразующих ионов c
определяется решением задачи:
,
;
(1)
,
;
(2)
,
;
(3)
,
(4)
,
;
,
,
;
(5)
,
,
;
(6)
,
,
;
(7)
,
,
,
(8)

где D- оператор Лапласа, s - удельная электропроводность среды, F - постоянная Фарадея, R - универсальная газовая постоянная,

- абсолютная температура, je°, ae - кинетические параметры, определяемые по экспериментальным данным (ток обмена и кажущиеся коэффициенты переноса), n - число электронов, участвующих в реакции, te - число переноса, De - коэффициент диффузии ионов, ge - коэффициент активности; dd - толщина диффузионного слоя на границе электрод-электролит; c°, ce - концентрация ионов в глубине электролита и на границе электрода,
,
,
- концентрационное, поверхностное и общее перенапряжение (поляризация) электродов, je - потенциал металла электрода, j
- граничный потенциал. Заданным является U=ja-jk - напряжение между электродами.

Математическая модель формулируется в виде краевой задачи для уравнения Лапласа (1) относительно потенциала электрического поля в объеме электролита, в котором выполняется закон Ома (2). Условия на изоляторах имеют вид (3). Граничные условия на электродах основаны на уравнении электрохимической кинетики Батлера–Фольмера (4), формуле Нернста (5) и соотношениях, определяющих концентрационное перенапряжение (6) и полную поляризацию электродов (7), (8).

Объектом исследования в процессах электромассопереноса является, как правило, один из электродов [1-3, 8-11]. Для задач моделирования катодной защиты от коррозии или процессов гальванопокрытий таким объектом является катодная поверхность, при моделировании анодной защиты или анодного растворения металлов - анодная. При этом для упрощения модели поляризацией на электроде противоположного знака пренебрегают, сопоставляя с его границами краевые условия первого рода. В реальных ЭХС процессы электромассопереноса на электродах взаимосвязаны. Учет концентрационных и поверхностных перенапряжений одновременно на всех электродах ЭХС позволяет получить более полную математическую модель данного процесса.

Алгоритм решения задачи

Для решения задачи (1)-(8) предлагается следующая схема итерационного процесса:

для заданного напряжения

выбирается начальное приближение плотности тока на границах электродов j1
,
ÎSe, e=a, k;

из уравнения (4) методом Ньютона определяются поверхностные перенапряжения

;

из формулы (5) вычисляются концентрации ионов на границах электродов ce

;

из уравнения (6) находятся концентрационные перенапряжения

;

из соотношений (7), (8) определяются значения полной поляризации

и граничного потенциала j
на электродах;

из уравнений (1), (2) по вычисленным j

рассчитываются новые значения плотности тока j2
;

в качестве очередного приближения плотности тока принимается

,

где kÎ(0,1) - коэффициент, который выбирается при проведении вычислительного эксперимента из условия наилучшей сходимости итерационного процесса, n - номер итерации.

Далее процесс b)-g) повторяется до выполнения условия:

, для всех pÎSe, e=a, k, где e - заданная погрешность.

В пункте e) для двумерных и трехмерных областей решается граничное интегральное уравнение относительно неизвестного потенциала j

, построенное с помощью интегральной формулы Грина [12-15].