Смекни!
smekni.com

Об использовании квазираспределения Глаубера-Сударшана для описания динамического хаоса (стр. 2 из 2)

Уравнение (29) может быть записано в виде уравнения непрерывности

где поток Ji определяется следующим образом

Стационарные квазираспределения можно получить из условия

или

Поскольку матрица D в нашем случае не вырождена, из (34) получаем

Отсюда видно, что стационарное квазираспределение Ps существует только, если выполняется условие

поскольку левая часть равенства (35) представляет собой градиент некоторой функции, условием существования которого является равенство нулю ротора, т.е. (36). Вычисления в нашем случае показывают, что условие (36) не выполняется, т.е. стационарное квазираспределение Ps не существует. Впрочем, отсутствие стационарного квазираспределения ожидаемо, поскольку рассматриваемый осциллятор находится в переменном внешнем поле. Заметим кроме того, что поскольку этот осцилятор может находиться в состояниях динамического хаоса только при наличии внешнего поля, то можно утверждать, что в состояниях динамического хаоса квазираспределение P(z1,z2;t) всегда будет нестационарным.

Уравнению (29) соответствуют стохастические уравнения:

Легко показать, что

где

- средние значения координаты и импульса в когерентном состоянии |z> , т.е.

Таким образом, мы имеем стохастические уравнения для средних в когерентном состоянии значений координаты и импульса:

где

То обстоятельство, что стохастические уравнения (39), (40) получены для средних

и
в когерентном состоянии, пожалуй, неудивительно, поскольку хорошо известно, что энергия осциллятора, вычисленная с помощью средних
и
, в когерентном состоянии наиболее близка по форме с энергией классического осциллятора, а соотношение неопределенностей минимизируется именно в когерентных состояниях.

И, наконец, заметим, что не все элементы диффузионной матрицы D являются положительно определенными:

Диагональные элементы этой матрицы D11 и D22 имеют разные знаки. Отрицательный коэффициент диффузии говорил бы, например, о том, что частицы диффундируют не в направлении, противоположном направлению градиента концентрации, что, конечно, в статистической системе, предоставленной самой себе, нереально. Однако в условиях динамического хаоса отрицательный элемент диффузионной матрицы, возможно, означает, что в системе возникают "потоки", имеющие одинаковое направление с градиентом. Заметим, что эти "потоки" возникают в пространстве когерентных состояний. Такое "нефизичное" поведение обусловлено, конечно, действием внешних сил. Возможно, что именно такое свойство системы и приводит к нерегулярности в высоковозбужденных состояниях частиц, т.е. к динамическому хаосу. Возможно также, что критические явления во вращательных спектрах [6-10] связаны с подобным поведением систем.

Списоклитературы

Lichtenberg A.J. and Lieberman M.A. Regular and Stochastic Motion. New York: Springer, 1983.

Moon F.C. Chaotic Vibrations. New York: John Wiley & Sons, 1987.

Югай К.Н. Динамический хаос в высоковозбужденных состояниях квантового осциллятора Даффинга во внешнем гармоническом поле // Изв.вузов. Физика. 1993. N.3. С.90-94.

Yugay K.N. Dynamical chaos: applications to some optical problems // SPIE, High-Resolution Molecular Spectroscopy. 1991. V.1811. P.348-352.

Базь А.И., Зельдович Я.Б., Переломов А.М. Рассеяние, реакции и распады в нерелятивистской квантовой механике. М.: Наука, 1971, 544 с.

Pavlichenkov I.M., Zhilinskii B.I. Rotation of molecules around specific axes: axes reorientation under rotational excitation // Chem. Phys. 1985. V.100. N.3. P.339-343.

Жилинский Б.И., Павличенков И.М. Симметрия и критические явления во вращательных спектрах изолированных микросистем // ДАН СССР. 1986. Т.288. N.2. С.355-359.

Жилинский Б.И., Павличенков И.М. Критические явления во вращательных спектрах // ЖЭТФ. 1987. Т.92. N.2. С.387-393.

Pavlichenkov I.M. Bifurcation in quantum rotational spectra // SPIE, High-Resolution Molekular Spectroscopy. 1991. V.1811. P.12-25.

Жилинский Б.И. Теория сложных молекулярных спектров. М.: Изд-во МГУ, 1989. 200 с.