Теорема 2.3. (спектральная теорема в форме операторов умножения). Паре ортопроекторов Р1 и Р2 в сепарабельном гильбертовом пространстве Н соответствует разложение
Н = Н0,0
где ρ1 > ρ2 >… ρк меры на интервале (0,
P1 = P1,0
Р2 = P0,1
Iк – единичный оператор в L2((0,
Доказательство. Пространство Н можно представить в виде ортогональной суммы инвариантных подпространств
Н = Н0,0
Всякому положительному функционалу F в *-алгебре P2 отвечает циклическое представление πF *-алгебры P2 в некотором гильбертовом пространстве НF. При этом НF можно реализовать как L2(F), то есть как гильбертово пространство всех функций с интегрируемым квадратом по мере μF на Т.
Пусть каждому вектору ξ
Если η
Множество максимальных векторов всюду плотно в Н. Пусть существует счетное разложение Н =
ξк+1 – максимальный вектор в (
d (ζк,
Тогда разложение Н =
Пусть представления πμ в L2(Т, μ) и πν в L2(Т, ν) эквивалентны. Пусть v:L2(Т, μ) →L2(Т, ν) устанавливающий их эквивалентность изоморфизм. Положим f=1, а=v(f), тогда для любой непрерывной функции g на Т v(g)=vπμ(g)f = πν (g)vf = πν (g)a = ga. Так как v – изометрическое отображение, то dμ=|a|2dν. Таким образом мера μ абсолютно непрерывна по мере ν. Аналогично, рассматривая обратный оператор, получаем, что ν абсолютно непрерывна по μ, то есть эти меры эквивалентны. Значит существует разложение Н΄ =
P1 = P1,0
Р2 = P0,1
Iк – единичный оператор в L2((0,
Теорема 2.4. (спектральная теорема в форме разложения единицы). Паре ортопроекторов Р1 и Р2 в сепарабельном гильбертовом пространстве Н соответствует разложение
Н = Н0,0
в прямой интеграл инвариантных относительно Р1, Р2 подпространств и определенное на Т = (0,
P1 = P1,0
Р2 = P0,1
Доказательство. Всякий самосопряженный оператор А, действующий в Н, изометрически изоморфен оператору умножения на независимую переменную в пространстве
Глава III. Спектр суммы двух ортопроекторов
§1. Спектр суммы двух ортопроекторов в унитарном пространстве
1.1. Спектр ортопроектора в гильбертовом пространстве.
Теорема 1.1. Пусть Н – гильбертово пространство. Если Р – ортопроектор, то
Доказательство. Рассмотрим выражение Рх - λх = y, х, y