Пусть π и π΄ - неприводимые представления *-алгебры А в гильбертовых пространствах Н и Н΄ соответственно. Допустим, что существует ненулевой сплетающий оператор Т : Н → Н΄. Тогда из (2.1.) и теоремы 2.6. следует, что Т*Т и ТТ* - скалярны (≠0) и π, π΄ эквивалентны.
2.4. Конечномерные представления.
Теорема 2.7. Пусть π – конечномерное представление *-алгебры А. Тогда π = π1
Доказательство. Если dimπ = 0 (n=0), то все доказано. Предположим, что dimπ = q и что наше предложение доказано при dimπ<q. Если π неприводимо, то предложение снова доказано. В противном случае π = π΄
Разложение π = π1
Пусть ρ1, ρ2 – два неприводимых подпредставления π. Им отвечают инвариантные подпространства Н1 и Н2. Пусть Р1 и Р2 – проекторы Н на Н1 и Н2. Они коммутируют с π(А). Поэтому ограничение Р2 на Н1 есть оператор, сплетающий ρ1 и ρ2. Следовательно, если Н1 и Н2 не ортогональны, то из пункта 2.3. следует, что ρ1 и ρ2 эквивалентны. Это доказывает, что любое неприводимое подпредставление π эквивалентно одному из πi . Итак, перегруп- пировав πi , получаем, что π = ν1
Теорема 2.8. В разложении π = ρ1ν1΄
2.5. Интегрирование и дезинтегрирование представлений. Напомним определение борелевского пространства.
Определение 2.7. Борелевским пространством называется множество Т, снабженное множеством В подмножеств Т, обладающим следующими свойствами: Т
Определение 2.8. Пусть Т1, Т2 – борелевские пространства. Отображение f: Т1→Т2 называется борелевским, если полный прообраз относительно f любого множества в Т2 есть борелевское множество в Т1.
Дадим несколько вспомогательных определений и утверждений.
Пусть Т – борелевское пространство и μ – положительная мера на Т.
Определение 2.9. μ – измеримое поле гильбертовых пространств на Т есть пара ε = ((H(t))t
(i) Г – векторное подпространство
существует последовательность (х1, х2,…) элементов Г таких, что для любого t
для любого х
пусть х – векторное поле; если для любого y
Пусть ε = ((H(t))t
Если х, y – с интегрируемым квадратом, то х+y и λх (λ
(x, y) =
Тогда векторные поля с интегрируемым квадратом образуют гильбертово пространство Н, называемое прямым интегралом Н(t) и обозначаемое
Определение 2.10. Пусть ε = ((H(t))t
Пусть Т – борелевское пространство, μ - положительная мера на Т, t→Н(t) - μ - измеримое поле гильбертовых пространств на Т. Пусть для каждого t
Определение 2.11. Поле представлений t→π(t) называется измеримым, если для каждого х
Если поле представлений t→π(t) измеримо, то для каждого х
Теорема 2.9. Отображение х→π(х) есть представление А в Н.
Доказательство. Для любых х, y
π(х+y) =
+
Аналогично π(λх) = λπ(х), π(хy) = π(х) π(y), π(х*)=π(х)*
Определение 2.12. В предыдущих обозначениях π называется прямым интегралом π(t) и обозначается π =
Определение 2.13. Операторное поле t→φ(t)I(t)
Пусть ε = ((H(t))t
есть изометрический изоморфизм Н на Н1, называемый каноническим.
Действительно,
||
Теорема 2.10. Пусть Т – борелевское пространство, μ – мера на Т, t→Н(t) – измеримое поле гильбертовых пространств на Т, t→π(t) – измеримое поле представлений А в Н(t),
Н =