Тогда τ = ν, следовательно U = 0 и представления неэквивалентны.
Теорема 1.1. Пусть π: P2 →L(H) - *-представление *-алгебры P2 .
Тогда:
(i) Все одномерные и неэквивалентные представления имеют вид: π0,0(p1) = 0; π0,0(p2) = 0; π1,0(p1) = 1; π1,0(p2) = 0; π0,1(p1) = 0; π0,1(p2) = 1; π1,1(p1) = 1; π1,1(p2) = 1;
(ii) Все двумерные неприводимые и неэквивалентные представления имеют вид: π(p1)
Доказательство следует из сказанного выше и в пункте (ii) можно положить π(p2) =
1.4. n – мерные *-представления *-алгебры P2 . Рассмотрим случай нечетной размерности пространства Н. Если dimН=2n+1, где n>1 натуральное, то выполняется неравенство
max (dimН1, dimН1┴) + max (dimН2, dimН2┴) > 2n+1 (1.4.)
Тогда обязательно найдутся такие i = 0,1 и j= 0,1, что Нi,j ≠ {0}, следовательно, существует нетривиальное инвариантное подпространство относительно *-представления π, но тогда π приводимо.
Пусть теперь dimН=2n, n>1 натуральное. Будем считать, что dimН1 = n, dimН2 = n и Нi,j = {0} для любых i = 0,1 и j= 0,1, то есть Нi,j линейно независимы. Если это не так, то снова будет выполнятся неравенство (1.4.) и *-представление π окажется приводимым. При этих условиях справедлива лемма.
Лемма 1.1. Существует х ≠ 0, х
Доказательство. Пусть
к = 1,…, n к = 1,…, n
Так как х
Р1Р2х = Р1Р2
= Р1
Таким образом получаем систему линейных однородных уравнений относительно q1,…, qn:
j = 1,…, n
Подбирая λ
Лемма 1.2. Пусть элемент х удовлетворяет условиям леммы 15. Тогда L=л.о. {х, Р2х} – инвариантное подпространство в Н относительно Р1 и Р2.
Доказательство. Проверим инвариантность L. Для любых a, b
Р1 (aх + bР2х) = aх + λbх = (a + λb) х
Р2 (aх + bР2х) = aР2х + bР2х = (a + b) Р2 х
dimL = 2, так как Нi,j = {0} (для всех i, j= 0,1).
Действительно, если aх + bР2х = 0, где, например, а ≠ 0, то х =
Итак, получаем предложение.
Теорема 1.2. Если dimН = n, n>2, то нет неприводимых *-пред- ставлений *-алгебры P2 . Все неприводимые конечномерные *-представления одномерны и двумерны.
1.5. Спектральная теорема. Пусть dimН = n. В этом пункте мы получим разложение на неприводимые *-подпредставления исходного *-представления π *-алгебры P2, а также разложение пространства Н на инвариантные подпространства относительно π.
Теорема 3.1. (спектральная теорема). Существует единственное разложе- ние Н в ортогональную сумму инвариантных относительно Р1 и Р2 подпространств
Н = Н0,0
где каждому подпространству Нк соответствует одно φк
I = P0,0
P1 = P1,0
Р2 = P0,1
где Iк – единичный оператор на Нк (к = 1,…, m).
Доказательство. Пусть dimНi,j = ni,j. Сразу можем записать разложение
Н = Н0,0
Н΄ =
Собирая вместе все Нφк, у которых одно φк, получим изоморфизм
Нφк