Рассмотрим СДР с минимально возможным количеством дипольных подрешеток (для плоской СДР L=3, для объемной - L=4).
Для случая L=3 (плоская СДР) положим
. Линии равного уровня f изображены на рис. 1. Используя (13), запишем систему уравнений в видеИз всех решений системы
Рис. 1 Целевая функция f (L=3) в квадрате |
существует одно нетривиальное решение:
, , , остальные получаются применением свойств , , .Проверим, что в данной точке
.с собственными числами
. Так как собственные числа отрицательны, то матрица Гессе отрицательно определена. Таким образом, представленные решения являются точками строгих глобальных максимумов. В частности, также следует, что гексогональные кольцевые решетки оптимальны в смысле минимума целевой функции (10).Для объемной СДР (n=3) численная оптимизация методом циклического покоординатного спуска [] для L=4 (с точностью до машинного нуля) приводит к конфигурации векторов hi, образующих правильный тетраэдр, то есть решение задается равенствами:
(в силу свойства ) , . Вторая конфигурация, к которой сходился алгоритм, получается из первой путем изменения направления какого-либо одного из порождающих векторов. Аналитические вычисления показывают, что градиент в данной точке равен нулю, а матрица Гессе равна:Характеристический многочлен матрицы имеет вид
с корнями:
, . Так как корни положительны, то положительно определена и матрица Гессе. Следовательно, найдено оптимальное (в смысле минимума (11)) решение. Эксперименты по численной оптимизации не приводят к другим решениям, кроме указанных. Это дает основание полагать, что найденные решения - точки глобальных минимумов g.Список литературы
Белов В.И. Теория фазовых измерительных систем / Под. ред. Г.Н.Глазова. Томск: ТГАСУР, 1994. С.144.
Васильев Ф.П. Численные методы решения экстремальных задач. М.: Гл. ред. физ.-мат. лит., 1988. С. 552.