Рис. 10
Абсциссы точек пересечения графиков функций дадут решения уравнения.
Прямая графика функции y=3 пересеклась с графиком функции y=|x – 2| в точках с координатами (-1; 3) и (5; 3), следовательно решениями уравнения будут абсциссы точек:
x=-1, x=5
Ответ:
Пример 2. Решитм аналитически и графически уравнение 1 + |x| = 0.5.
Решение:
Аналитическое решение
Преобразуем уравнение: 1 + |x| = 0.5
|x| =0.5-1
|x|=-0.5
Понятно, что в этом случае уравнение не имеет решений, так как, по определению, модуль всегда неотрицателен.
Ответ: решений нет.
Графическое решение
Преобразуем уравнение: : 1 + |x| = 0.5
|x| =0.5-1
|x|=-0.5
Графиком функции
являются лучи - биссектрисы 1-го и 2-го координатных углов. Графиком функции является прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.Рис. 11
Графики не пересекаются, значит уравнение не имеет решений (см. рис. 11).
Ответ: нет решений.
Пример 3. Решите аналитически и графически уравнение |-x + 2| = 2x + 1.
Решение:
Аналитическое решение
1-й способ
Прежде следует установить область допустимых значений переменной. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости делать этого, а сейчас она возникла.
Дело в том, что в этом примере в левой части уравнения модуль некоторого выражения, а в правой части не число, а выражение с переменной, - именно это важное обстоятельство отличает данный пример от предыдущих.
Поскольку в левой части - модуль, а в правой части, выражение, содержащее переменную, необходимо потребовать, чтобы это выражение было неотрицательным, т. е.
Таким образом, область допустимыхзначений модуля
Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:
(1)
и (2)Решим каждую систему:
(1)
входит в промежуток и является корнем уравнения.(2)
x = -3 не входит в промежуток и не является корнем уравнения.Ответ:
2-й способ
Установим, при каких значениях x модуль в левой части уравнения обращается в нуль:
Получим два промежутка, на каждом из которых решим данное уравнение (см. рис. 12):
Рис. 12
В результате будем иметь совокупность смешанных систем:
Решая полученные системы, находим:
(1)
входит в промежуток и является корнем уравнения.(2)
не входит в промежуток и x=-3 не является корнем уравненияОтвет:
4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами этих чисел.
Помимо приведенных мною выше способов существует определенная равносильность, между числами и модулями данных чисел, а также между квадратами и модулями данных чисел:
|a|=|b| a=b или a=-b
a2=b2 a=b или a=-b (1)
Отсюда в свою очередь получим, что
|a|=|b| a2=b2
(2)
Пример 4. Решим уравнение |x + 1|=|2x – 5| двумя различными способами.
1.Учитывая соотношение (1), получим:
x + 1=2x – 5 или x + 1=-2x + 5
x – 2x=-5 – 1 x + 2x=5 – 1
-x=-6|(:1) 3x=4
x=6 x=11/3
Корень первого уравнения x=6, корень второго уравнения x=11/3
Таким образом корни исходного уравнения x1=6, x2=11/32. В силу соотношения (2), получим
(x + 1)2=(2x – 5)2, или x2 + 2x + 1=4x2 – 20x + 25
x2 – 4x2 +2x+1 + 20x – 25=0
-3x2 + 22x – 24=0|(:-1)
3x2 – 22x + 24=0
D/4=121-3 24=121 – 72=49>0 уравнение имеет 2 различных корня.
x1=(11 – 7 )/3=11/3
x2=(11 + 7 )/3=6
Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6
Ответ: x1=6, x2=11/3
Пример 5. Решим уравнение (2x + 3)2=(x – 1)2.
Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера(и по соотношению (1)):
2х + 3=х – 1 или 2х + 3=-х + 1
2х – х=-1 – 3 2х+ х=1 – 3
х=-4 х=-0,(6)
Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)
Ответ: х1=-4, х2=0,(6)
Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|
Пользуясь соотношением (1), получим:
х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)
-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x - 9
x2 - 6x + 15=0 x2 – 4x + 3=0
D=36 – 4 15=36 – 60= -24 <0 D=16 – 4 3=4 >02 р.к.
корней нет.
x1=(4- 2 ) /2=1
x2=(4 + 2 ) /2=3
Проверка: |1 – 6|=|12 – 5 1 + 9| |3 – 6|=|32 – 5 3 + 9|
5 = 5(И) 3 = |9 – 15 + 9|
3 = 3(И)
Ответ: x1=1; x2=3
4.2.Использование геометрической интерпритации модуля для решения уравнений.
Геометрический смысл модуля разности величин-это расстояние между ними. Например, геометрический смысл выражения |x – a | -длина отрезка координатной оси, соединяющей точки с абсцисами а и х . Перевод алгеб-раической задачи на геометрический язык часто позволяет избежать громоздких решений.
Пример7. Решим уравнение |x – 1| + |x – 2|=1 с использованием геометрической интерпритации модуля.
Будем рассуждать следующим образом: исходя из геометрической интерпри-тации модуля, левая часть уравнения представляет собой сумму расстояний от некторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка [1; 2] обладают требуемым свойством, а точки, расположенные вне этого отрезка- нет. Отсюда ответ: множеством решений уравнения является отрезок [1; 2].
Ответ: х [1; 2]
Пример8. Решим уравнение |x – 1| - |x – 2|=1 1 с использованием геометрической интерпритации модуля.
Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно решением данного уравнения будет являтся не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.
Ответ: х [2; +)
Обобщением вышеприведенных уравнений являются следующие равносильные переходы:
|x – a| + |x – b|=b – a, где b a a x b
|x – a| - |x – b|=b – a, где b a x b
4.3. Графики простейших функций, содержащих знак абсолютной величины
Под простейшими функциями понимают алгебраическую сумму модулей линейных выражений. Сформулируем утверждение, позволяющее строить графики таких функций, не раскрывая модули ( что особенно важно, когда модулей достаточно много ): "Алгебраическая сумма модулей n линейных выражений представляет собой кусочно- линейную функцию, график которой состоит из n +1 прямолинейного отрезка. Тогда график может быть построен по n +2 точкам, n из которых представляют собой корни внутримодульных выражений, ещё одна -- произвольная точка с абсциссой, меньшей меньшего из этих корней и последняя -- с абсциссой, большей большего из корней.
Например:
1)f(x)=|x - 1| Вычисляя функции в точках 1, 0 и 2, получаем график, состоящий из двух отрезков(рис.1)
2) f(x)=|x - 1| + |x – 2| Вычисляя значение функиции в точках с абсциссами 1, 2, 0 и 3, получаем график, состоящий из двух отрезков прямых.(рис.2)
3) f(x)=|x - 1| + |x – 2| + |x – 3| Для построения графика вычислим значения функции в точках 1, 2, 3, 0 и 4 (рис.3)
4) f(x)=|x - 1| - |x – 2| График разности строится аналогично графику суммы, тоесть по точкам 1, 2, 0 и 3.
рис1. рис2. рис3. рис4.
4.4.Решение нестандартных уравнений, содержащих модули.
Пример9. Решить уравнение 3| x + 2 | + x2 + 6x + 2 = 0.
Решение.
Рассмотрим два случая.
Ответ: (– 4; – 1).
Пример10. Решить уравнение | 4 – x | + | (x – 1)(x – 3) | = 1.
Решение.
Учитывая, что | 4 – x | = | x – 4 |, рассмотрим четыре случая.
так как2)
3)
4)
4)
Ответ: 3.
Графический способ.
Построим графики функций y = |(x–1)(x–3)| и y=1–|x–4 |
1)в Гy = |(x–1)(x–3)| подставим значение х=1 и х=3. Мы получим у=0,
тоесть пересечение графика с осью ОХ. При х равном нулю у=3, тоесть график пересекается с осью ОУ в точке (0 ;3). И при х=4 у также равен 3- мы получили первый график.