Смекни!
smekni.com

Интеграл и его применение (стр. 2 из 3)

Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875—1941) и А. Данжуа (1884—1974), советским математиком А. Я. Хинчинчиным (1894—1959).

Определение и свойства интеграла

Если F(x) – одна из первообразных функции f(x) на промежутке J, то первообразная на этом промежутке имеет вид F(x)+C, где CÎR.

Определение. Множество всех первообразных функции f(x) на промежутке J называется определенным интегралом от функции f(x) на этом промежутке и обозначается òf(x)dx.

òf(x)dx = F(x)+C, где F(x) – некоторая первообразная на промежутке J.

f – подынтегральная функция, f(x) – подынтегральное выражение, x – переменная интегрирования, C – постоянная интегрирования.

Свойства неопределенного интеграла.

(òf(x)dx) ¢ = òf(x)dx ,

òf(x)dx = F(x)+C, где F¢(x) = f(x)

(òf(x)dx) ¢= (F(x)+C) ¢= f(x)

òf¢(x)dx = f(x)+C– из определения.

ò k f (x)dx = k ò f¢(x)dx

если k – постоянная и F¢(x)=f(x),

ò k f (x)dx = k F(x)dx = k(F(x)dx+C1)= k ò f¢(x)dx

ò ( f(x)+g(x)+...+h(x) )dx = ò f(x)dx + ò g(x)dx +...+ ò h(x)dx

ò ( f(x)+g(x)+...+h(x) )dx = ò [F ¢(x)+G ¢(x)+...+H ¢(x)]dx =

= ò [F(x)+G(x)+...+H(x)] ¢dx = F(x)+G(x)+...+H(x)+C=

= òf(x)dx + òg(x)dx +...+ òh(x)dx, где C=C1+C2+C3+...+Cn.

Интегрирование

Табличный способ.

Способ подстановки.

Если подынтегральная функция не является табличным интегралом, то возможно (не всегда) применить этот способ. Для этого надо:

разбить подынтегральную функцию на два множителя;

обозначить один из множителей новой переменной;

выразить второй множитель через новую переменную;

составить интеграл, найти его значение и выполнить обратную подстановку.

Примечание: за новую переменную лучше обозначить ту функцию, которая связана с оставшимся выражением.

Примеры:

1. òxÖ(3x2–1)dx;

Пусть 3x2–1=t (t³0), возьмем производную от обеих частей:

6xdx = dt

xdx=dt/6

3

ódt 1 1 ó 1 1 t 2 2 1 ———Ø

ô— t 2 = — ô t 2dt = – ——– + C = —Ö 3x2–1 +C

õ 6 6 õ 6 3 9

2. t

ò sin x cos 3x dx = ò – t3dt = – – + C

4

Пусть cos x = t

-sin x dx = dt

Метод преобразования подынтегральной функции в сумму или разность:

Примеры :

ò sin 3x cos x dx = 1/2 ò (sin 4x + sin 2x) dx = 1/8 cos 4x – ¼ cos 2x + C

ó x4+3x2+1 ó 1 1

ô———— dx = ô( x2+2 – ——– ) dx = — x2 + 2x – arctg x + C

õx2+1 õx2+1 3

Примечание: при решении этого примера хорошо делать многочлены ”углом”.

По частям

Если в заданном виде взять интеграл невозможно, а в то же время, очень легко находится первообразная одного множителя и производная другого, то можно использовать формулу.

(u(x)v(x))’=u’(x)v(x)+u(x)v(x)

u’(x)v(x)=(u(x)v(x)+u(x)v’(x)

Проинтегрируем обе части

òu’(x)v(x)dx=ò (u(x)v(x))’dx – òu(x)v’(x)dx

ò u’(x)v(x)dx=u(x)v(x)dx – ò u(x)v’(x)dx

Примеры:

ò x cos (x) dx = ò x dsin x = x sin x – ò sin x dx = x sin x + cos x + C

x = u(x)

cos x = v’(x)

Криволинейная трапеция

Определение. Фигура, ограниченная графиком непрерывной, знакопостоянной функции f(x), осью абцисс и прямыми x=a, x=b, называется криволинейной трапецией.

Способы нахождения площади криволинейной трапеции

Теорема. Если f(x) непрерывная и неотрицательная функция на отрезке [a;b], то площадь соответствующей криволинейной трапеции равна приращению первообразных.

Дано: f(x)– непрерывная неопр. функция, xÎ[a;b].

Доказать: S = F(b) – F(a), где F(x) – первообразная f(x).

Доказательство:

1) Рассмотрим вспомогательную функцию S(x). Каждому xÎ[a;b] поставим в соответствие ту часть криволинейной трапеции, которая лежит левее прямой, проходящей через точку с этой абциссой и параллельно оси ординат. Следовательно S(a)=0 и S(b)=Sтр

Докажем, что S(a) – первообразная f(x).

D( f ) = D(S) = [a;b]

S’(x0)= lim( S(x0+Dx) – S(x0) / Dx ), при Dx®0 DS – прямоугольник

Dx®0 со сторонами Dx и f(x0)

S’(x0) = lim(Dxf(x0) /Dx) = limf(x0)=f(x0): т.к. x0 точка, то S(x) –

Dx®0 Dx®0 первообразная f(x).

Следовательно по теореме об общем виде первообразной S(x)=F(x)+C.

Т.к. S(a)=0, то S(a) = F(a)+C

C = –Fa

S = S(b)=F(b)+C = F(b)–F(a)

II.

1). Разобьем отрезок [a;b] на n равных частей. Шаг разбиения Dx=(b–a)/n. При этом Sтр=lim(f(x0)Dx+f(x1)Dx+...+f(xn))Dx=n®¥= lim Dx(f(x0)+f(x1)+...+f(xn))При n®¥ получим, что Sтр= Dx(f(x0)+f(x1)+...+f(xn))

Предел этой суммы называют определенным интегралом.

b

Sтр=òf(x)dx

a

Сумма стоящая под пределом, называется интегральной суммой.

Определенный интеграл это предел интегральной суммы на отрезке [a;b] при n®¥. Интегральная сумма получается как предел суммы произведений длины отрезка, полученного при разбиении области определения функции в какой либо точке этого интервала.

a — нижний предел интегрирования;

b — верхний.

Формула Ньютона–Лейбница.

Сравнивая формулы площади криволинейной трапеции делаем вывод:

если F – первообразная для b на [a;b], то

b

ò f(x)dx = F(b)–F(a)

a

b b

ò f(x)dx = F(x) ô = F(b) – F(a)

aa

Свойства определенного интеграла.

1.

b b

ò f(x)dx = ò f(z)dz

a a

2.

a

ò f(x)dx = 0

a

a

ò f(x)dx = F(a) – F(a) = 0

a

3.

b a

ò f(x)dx = – ò f(x)dx

a b

b a

ò f(x)dx = F(a) – F(b) ò f(x)dx = F(b) – F(a) = – (F(a) – F(b))

ab

Если a, b и c любые точки промежутка I, на котором непрерывная функция f(x) имеет первообразную, то

b c b

ò f(x)dx = ò f(x)dx + ò f(x)dx

a a c

F(b) – F(a) = F(c) – F(a) + F(b) – F(c) = F(b) – F(a)

(это свойство аддитивности определенного интеграла)

Если l и m постоянные величины, то

bbb

ò (lf(x) +mj(x))dx = lò f(x)dx + mòj(x))dx –

aac

– это свойство линейности определенного интеграла.

6.

b b b b

ò (f(x)+g(x)+...+h(x))dx = ò f(x)dx+ ò g(x)dx+...+ ò h(x)dx

a a a a

b

ò (f(x)+g(x)+...+h(x))dx = (F(b) + G(b) +...+ H(b)) –

a

– (F(a) + G(a) +...+ H(a)) +C =

= F(b)–F(a)+C1 +G(b)–G(a)+C2+...+H(b)–H(a)+Cn=

b b b

= ò f(x)dx+ ò g(x)dx+...+ ò h(x)dx

aaa

Набор стандартных картинок

Т.к. f(x)<0, то формулу Ньютона-Лейбница составить нельзя, теорема верна только для f(x)³0.Надо:рассмотреть симметрию функции относительно оси OX. ABCD®A’B’CD bS(ABCD)=S(A’B’CD) = ò –f(x)dxa
b bS= ò f(x)dx = ò g(x)dxa a
c b S = ò (f(x)–g(x))dx+ò(g(x)–f(x))dxa c
f(x)® f(x)+mg(x)®g(x)+mb S= ò (f(x)+m–g(x)–m)dx = a b= ò (f(x)– g(x))dxaЕсли на отрезке [a;b] f(x)³g(x), то площадь между этими графиками равнаbò ((f(x)–g(x))dxa
Функции f(x) и g(x) произвольные и неотрицательныеb b bS=ò f(x)dx – ò g(x)dx = ò (f(x)–g(x))dxa a a
b b S=ò f(x)dx + ò g(x)dx a a

Применение интеграла

I. В физике.

Работа силы (A=FScosa, cosa¹ 1)

Если на частицу действует сила F, кинетическая энергия не остается постоянной. В этом случае согласно

d(mu2/2) = Fds

приращение кинетической энергии частицы за время dt равно скалярному произведению Fds, где ds – перемещение частицы за время dt. Величина

dA=Fds

называется работой, совершаемой силой F.

Пусть точка движется по оси ОХ под действием силы, проекция которой на ось ОХ есть функция f(x) (f–непрерывная функция). Под действием силы точка переместилась из точки S1(a) в S2(b). Разобьем отрезок [a;b] на n отрезков, одинаковой длины Dx = (b – a)/n. Работа силы будет равна сумме работ силы на полученных отрезках. Т.к. f(x) –непрерывна, то при малом [a;x1] работа силы на этом отрезке равна f(a)(x1–a). Аналогично на втором отрезке f(x1)(x2–x1), на n-ом отрезке — f(xn–1)(b–xn–1). Следовательно работа на [a;b] равна:

А »An = f(a)Dx +f(x1)Dx+...+f(xn–1)Dx=

= ((b–a)/n)(f(a)+f(x1)+...+f(xn–1))

Приблизительное равенство переходит в точное при n®¥

b

А = lim [(b–a)/n] ( f(a)+...+f(xn–1))= òf(x)dx (по определению)

n®¥a

Пример.

Пусть пружина жесткости С и длины l сжата на половину свой длины. Определить величину потенциальной энергии Ер равна работе A, совершаемой силой –F(s) упругость пружины при её сжатии, то

l/2

Eп = A= – ò (–F(s)) dx

0

Из курса механики известно, что F(s)= –Cs.

Отсюда находим

l/2 l/2

Еп= – ò (–Cs)ds = CS2/2 | = C/2 l2/4

0 0

Ответ: Cl2/8.

Координаты центра масс

Центр масс – точка через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела.

Пусть материальная однородная пластина о имеет форму криволинейной трапеции {x;y |a£x£b; 0£y£f(x)} и функция y=f(x) непрерывна на [a;b], а площадь этойкриволинейной трапеции равна S, тогда координаты центра масс пластины о находят по формулам:

b b

x0 = (1/S) ò x f(x) dx; y0 = (1/2S) ò f 2(x) dx;

aa

Примеры.

Центр масс.

Найти центр масс однородного полукруга радиуса R.

Изобразим полукруг в системе координат OXY.

Из соображений симметрии и однородности замечаем, что абсцисса точки Mxm=0Функция, описывающая полукруг имеет вид:y = Ö(R2–x2)Пусть S = pR2/2 — площадь полукруга, тогда

R R

y = (1/2S) òÖ(R2–x2)dx = (1/pR2) òÖ(R2–x2)dx =

–R –R

R

= (1/pR2)(R2x–x3/3)|= 4R/3p

–R

Ответ: M(0; 4R/3p )

Путь, пройденный материальной точкой